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1.0 FORFWORD 

This report  i s  presented i n  p a r t i a l  fu l f i l lment  of contract  
It contains a description of the work carr ied out during 

The research of 

NAS 3-7111. 
the  f i f t h  year of an experimental program t o  evaluate the pulsed 
coaxial  plasma gun as a thrus tor  for space vehicles. 
the preceeding four years i s  summarized i n  the f i n a l  reports  of the 
previous contracts .lo4 
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2.0 IKCRODUCTION 

A wide va r i e ty  of plasma accelerators  can be c l a s s i f i e d  as co- 
axial. 
program. All are pulsed, receiving power from capaci tor  banks, and i n  each, 
t h e  current passes through the  plasma via electrode s t ruc tures .  
economy, it i s  a l so  necessary t o  pulse the  propel lant  flow. 
of  t he  discharge current  i s  such tha t  t he  dominant accelerat ing force i s  
t h e  j x B force. 

Three types have been investigated i n  our research and development 

For mass 
The magnitude 

Our devices can be fur ther  c lass i f ied ,  apa r t  from geometrical 
de t a i l s ,  by the  method of the  propel lant  inject ion,  t h e  duration of t he  d is -  
charge, and t h e  behavior of t he  current d i s t r ibu t ion .  
which we continue t o  c a l l  t he  coaxial gun, the  current d i s t r ibu t ion  moves 
along the  coaxial  e lectrodes and, act ing l i k e  a piston, expel ls  plasma. 
The discharge pulse i s  typ ica l ly  1-10 psec long, and i s  matched t o  t h e  
arrival of t he  current  a t  the e x i t  of t h e  accelerator .  This device has 
been studied extensively, f o r  a var ie ty  of propel lant  d i s t r ibu t ions  using 
r a d i a l  inject ion.  

I n  the  f i rs t  device, 

(See Sections 3 and 4). 

I n  the  second device, t he  discharge i s  typ ica l ly  1 msec long, 
and the  current  d i s t r ibu t ion  remains s ta t ionary.  The propel lant  pulse 
and power pulse maintain a quasi-steady-state condition f o r  most of t he  
discharge, and it i s  found, that the proper t ies  of t he  discharge and t h e  
exhaust do likewise. This device, t he  Pulsed Arc Gun, i s  e s sen t i a l ly  a 
pulsed MPD arc. Basic s tud ies  and performance measurements on t h i s  device 
are reported i n  Section 5. Original measurements on the  current densi ty  
and the magnetic f i e l d s  i n  such devices have been made. A unique t o o l  f o r  
measuring t h e  ve loc i ty  d is t r ibu t ions  of  t he  ions i n  the  exhaust has been 
used. 

The t h i r d  acce lera tor  type w a s  or iginated i n  another laboratory.  
It, l i k e  t h e  coaxial  gun, has a short  pulse. It fea tures  unique met'nods 
f o r  propel lant  i n j ec t ion  and f o r  t r iggering the discharge. 
t h e  discharge has not yet  been probed. 
t i o n  i s  given i n  Section 4.3. 

The nature of 
Our experience with such an accelera- 

I n i t i a l  work directed toward r e a l i s t i c  spacef l ight  propel lant  
i n j ec to r s ,  as opposed t o  laboratory in jec tors ,  i s  given i n  Section 6. 
use of  pulsed, metal feed systems is  considered, and exploratory experiments 
are described. 

The 

Section 7 contains a preliminary look a t  power conditioning. 
Sec t ion  8 descr ibes  the  new diagnostic t oo l s  which were used t h i s  year. 
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3.0 REVIEW OF PREVIOUS WORK 

5 I n  t h e  first year a major e f f o r t  was spent i n  developing 
diagnost ic  methods t o  measure t h e  e l e c t r i c  and magnetic f i e l d s  i n  the gun. 
Detailed measurements of t he  azimuthal magnetic f i e l d  and the  a x i a l  
e l e c t r i c  f i e l d  were made from which the  ion density d i s t r ibu t ion  w a s  deduced 
under the  assumptions t h a t  the  electrons were t h e  main current  c a r r i e r s  and 
t h a t  there  w a s  no r a d i a l  plasma motion. The conclusion drawn from these 
measurements w a s  that an ionizat ion wave propagated i n  t h e  accelerator ,  
imparting some forward momentum t o  t he  ions but  i n su f f i c i en t  t o  cause 
s ign i f i can t  mass accumulation i n  the current  sheet. O u r  later research 
showed tha t  one assumption above is  not valid,  t h a t  ion current  i s  i n  
f a c t  important, and that t h e  plasma i s  e i t h e r  brought t o  the  ve loc i ty  of 
the  current  sheet,  or driven i n t o  the  electrodes.  

The f i e l d  probes showed t h a t  there  w a s  no appreciable accelera- 
t i o n  of t h e  plasma i n  one of t he  ear ly  guns. 
of e i g h t  possible  system parameters, t h e  capacitor wits t he  only good choice 
t o  vary. We predicted quant i ta t ively t h e  increase i n  performance t o  be ex- 
pected by increasing C from 1 pF t o  5 FF. Again t i e  probes proved vz:iia3lc 
i n  suggesting t h a t  a fixed energy loss  might occur e a r l y  i n  the  discharge, 
which could be minimized re la t ive ly ,  by again increasing C. 

The scal ing l a w s  showed that 

Other conclusions i n  the f irst  year were: it was possible  t o  
t r a n s f e r  t h e  energy of t he  magnetic f i e l d  i n t o  d i rec ted  plasma k ine t i c  
energy; t he  re laxa t ion  o s c i l l a t o r  mode (no moving p a r t s  - gaseous propel lants)  
would probably not be feas ib le  a t  r epe t i t i on  rates less than  100 per  second 
under gun conditions i n  use; b a l l i s t i c  pendulums were being used erroneously 
i n  t h i s  f ie ld;6 and f ina l ly ,  t h a t  t he  iden t i f i ca t ion  of a moving current  
d i s t r i b u t i o n  o r  a moving luminous f r o n t  with an ac tua l  motion of t he  plasma 
i s  very hazardous. 

A t  the  beginning of t h i s  program the  coaxial  gun w a s  chosen 
f o r  development because it i s  simple i n  concept, it o f f e r s  the  possi-  
b i l i t y  of extreme r e l i a b i l i t y ,  and it i s  a device i n  which the  plasma 
i s  always t i g h t l y  coupled t o  the magnetic f i e l d  as d i s t i n c t  from induc- 
t ive guns. The o r ig ina l  design was based on the  model of a current  
shee t  accelerat ing a constant mass of gas.1 A gun with a shor t  b a r r e l  
l ength  and a correspondingly short  e l e c t r i c a l  period w a s  used i n  order  
t o  l i m i t  the  time ava i lab le  f o r  the growth of i n s t a b i l i t i e s  a t  the  i n t e r -  
face between the  magnetic f i e l d  and the  plasma. 
these  cons t ra in ts  would a l so  minimize the electrode erosion. 
w a s  operated i n  t h e  gas-triggered mode because the  lifetime of high 
current  switches i s  too short  f o r  p r a c t i c a l  missions, and because scal ing 
l a w s  indicated t h a t  an extremely low source inductance (- 10-9 H) was 
necessary f o r  e f f i c i e n t  operation. 

It w a s  believed t h a t  
The gun 

The energy-storage capacitance increase from 1 t o  5 pF was  done 
toward t h e  end of  the  f i rs t  year, and t h e  p a r a s i t i c  inductance was minimized 
i n  order  t o  improve the  energy t ransfer  t o  the accelerator .  Soon afterwards 
we found t h a t  t h e  current  sheet, which was i n i t i a l l y  azimuthally symmetric, 
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would collapse i n t o  a spoke a f t e r  it had moved a f e w  centimeters along 
the barrels .7  A f t e r  several months of inves t iga t ion  we found that t h i s  
i n s t a b i l i t y  would not occur if the  barrels were uniformly f i l l e d  with 
gas  when the  gun f i r ed .  
s ion t h e  fast-act ing ion iza t ion  gauge technique of Marshall. 

I n  t h i s  work we f i rs t  applied t o  plasma propul- 

The E and B f i e l d  mapping was then continued, current and voltage 
measurements were made, t h e  equivalent e l e c t r i c  c i r c u i t  was described and 
an  energy inventory was taken. 
t o  t h e  acce lera tor  bu t  t he  overa l l  thermal e f f ic iency  w a s  only about 25%. 
The energy-storage capacitance w a s  increased t o  10 p,F and the  source in- 
ductance w a s  lowered t o  about 1 nH, t h e  p r a c t i c a l  l i m i t  i n  t h i s  type of 
accelerator .  
acce le ra tor  increased as expected, but t he re  w a s  no s igni f icant  improvement 
i n  the  ove ra l l  eff ic iency.  
desirable ,  thereby increasing the e l e c t r i c a l  period so that the  current  
sheet  would be moving on the  r i s i n g  por t ion  of the  current  waveform. 

About 65% of the  s tored energy was del ivered 

The ef f ic iency  of energy t r a n s f e r  Prom capaci tor  t o  t h e  

Another increase i n  capacitance was deemed 

Additional r e s u l t s  of t h e  second year were: it i s  impossible 
t o  measure resistive losses  by voltage measurements a t  t h e  muzzle; t he  
assumption t h a t  t h e  electrons carry a l l  the current  i s  untenable. The 
la t te r  was a d i r e c t  result of a diagnostic program t o  measure the  ion 
ve loc i ty  i n  t h e  exhaust.8,g The e l e c t r o s t a t i c  cy l ind r i ca l  analyzer of 
Eubank w a s  adapted as a diagnostic too l .  It w a s  later shown t h a t  such 
analyze s were being ipproperly used i n  plasma exhausts by us and o ther  
groups.6 The conclusion t h a t  ions were important current  ca r r i e r s ,  how- 
ever, was establ ished firmly i n  our later experiments with E probes and 
Faraday cups. 

The experiments on current c a r r i e r s  a re  important t o  the  question 
of  t h e  acce lera t ion  process and t o  the  phenomena at the  electrode surface. 
The experiments l e d  t o  Lovberg's concept of ion  currentg" which results 
from t h e  ion iza t ion  process followed by the  separat ion of t he  p a r t i c l e s  i n  
each electron-ion pair formed i n  a magnetic f i e ld .  

During t h e  t h i r d  year, a capaci tor  development program was 
s t a r t e d  t o  reduce the  size,  weight, and cost  of the capacitor, while a t  
t h e  same time doubling the  capacitance. I n  t h e  course of t h i s  work a 
l ightweight,  low loss ,  low impedance d i s t r ibu ted  parameter pulse l i n e  
w a s  developed. 
because t h e  amplitude and period of the cur ren t  can be controlled independ- 
en t ly ,  and i n  addi t ion the  current and voltage waveforms a re  i n  phase. 
accura te  energy inventorygb w a s  taken with the pulse  l i n e  and found t o  be 
cons is ten t  with c i r c u i t  theory. The inventory showed t h a t  ohmic lo s ses  
were s m a l l ,  t h a t  88$ of t h e  stored energy could be t ransfer red  t o  the  ac- 
c e l e r a t o r  and t h a t  t h i s  w a s  shared approximately equally between work done 
on the current  sheet and magnetic f i e l d  energy, as expected, up t o  the  t i m e  
of  maximum magnetic energy. Thereafter, some of t he  magnetic energy was 
withdrawn i n t o  t h e  capacitor and some went i n t o  addi t iona l  work on the  
cur ren t  sheet. The thermal eff ic iency of t he  acce lera tor  was found t o  be 
dependent on t h e  matching between the  length of t h e  acce lera tor  and the  
pulse time. 
ve loc i ty  of 7 cm/psec. 

A pulse l i n e  i s  pa r t i cu la r ly  usefu l  i n  t h i s  appl icat ion 

An 

The highest  efficiency obtained was 45% a t  an average exhaust 
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A t  t h i s  t i m e  it was apparent t h a t  t he  ove ra l l  e f f ic iency  of 
t h e  acce lera tor  was not being l imited by poor energy transfer from the  
pulse  l i n e  t o  t h e  current  sheet. 
t he  f a c t  t h a t  t h e  current  sheet w a s  found t o  move a t  constant ve loc i ty  
i n t o  a gas of uniform density. 
plasma i s  equally par t i t ioned  between d i rec ted  k ine t i c  energy and i n t e r n a l  
energy. 
be l o s t  i n  rad ia t ion  i n  typ ica l  acce le ra tors  i n  a t i m e  sca le  comparable 
t o  t h e  accelerat ion period.10 
when operated i n  t h i s  mode, could not be g rea t e r  than about 5%. 

The poor e f f ic iency  was a t t r ibu ted  t o  

I n  t h i s  s i t ua t ion  energy supplied t o  the  

Our t h e o r e t i c a l  estimates showed that the  i n t e r n a l  energy would 

Consequently, t he  e f f ic iency  of t he  device, 

A t  t h e  beginning of t he  fourth year t he  re la t ionship  between 
the current  sheet velocity,  t he  gun current  and the  pulse- l ine impedance 
w a s  investigated,  i n  a gun with a uniform gas f i l l ,  f o r  a var ie ty  of pro- 
pe l lan ts .  It w a s  found t h a t  the sheet, >i.ecd varied l i n e a r l y  with current  
and w a s  r e l a t i v e l y  insens i t ive  t o  density, i n  accordance with a simple 
snowplow model. 
speed provided t h a t  t h e  current  had not dropped subs tan t ia l ly  when the  
plasma reached the  end of  the gun. 
e f f i c i enc ie s  i n  the  range 3545% were obtained i n  the spec i f ic  impulse 
range 2,000-10,000 seconds f o r  a wide va r i e ty  of propel lants .  

The exhaust velocity was approximately equal t o  the  sheet  

With this  mode of operation thermal 

Because of the  estimated theo re t i ca l  l i m i t  of 5 6  on efficiency, 
and t h e  experimental observation tha t  over a wide range of parameters the 
measured e f f ic iency  w a s  I 45%, no more experiments were planned w i t h  the 
gun operating w i t h  a uniform gas f i l l .  There did remain the  p o s s i b i l i t y  
of  inh ib i t ing  the loss i n  radiat ion by use of  propel lants  of grea te r  atomic 
mass and lesser number density w i t h  the hope of recovering the  i n t e r n a l  
energy by means of a proper nozzle. Also, one could hope t o  e s t ab l i sh  a 
preionized gas f i l l  so that the ions might bounce of f  t h e  current sheet. 
Another a l t e rna t ive  w a s  t o  t a i l o r  the  energy source so that a constant 
ve loc i ty  current  sheet  would not occur. 

We t r i ed ,  instead, to circumvent the 5 6  eff ic iency l i m i t  by 
two inetbods: 
mass i s  entrained i n  the  moving current sheet ea r ly  i n  t h e  accelerat ion 
cycle  and then vigorously accelerated; and i n  the  o ther  the plasma i s  
accelerated by a s ta t ionary  current sheet as i n  steady-state accelerators .  
The former approach required t h a t  spoke i n s t a b i l i t i e s  be inhibi ted.  The 
la t ter  was a new concept i n  pulsed accelerators ;  it i s  e s sen t i a l ly  a 
pulsed arc,  and the device has been designated a pulsed arc  . A strong 

sults and our present  opinion of  the  device are given i n  a later section. 
I n  September 1965, t h e  pulsed a r c  gun program w a s  interrupted i n  order t o  
pursue the  performance evaluation of t he  coaxial  th rus tor .  

one, essen t i a l ly  the slug-model approach again i n  which the 

e f f o r t  was appl ied t o  the pulsed arc  gun for .about  one year. fY The re- 

One f u r t h e r  s ign i f icant  accomplishment i n  the  fourth year was 
i n  t h e  continued development of  energy-storage capaci tors  .12 
mil l ion  discharges were achieved a t  energy dens i t i e s  of  80 joules/lb and 
4 joules/in.3 with a charging voltage a t  4 kV. 
are considerably higher than t h e  minimum required f o r  p r a c t i c a l  missions; 
w e  are confident that ne i ther  capacitor weight nor lifetime w i l l  be the 
l i m i t i n g  f ac to r  i n  the  performance of pulsed plasma thrustors .  

Over one 

These energy dens i t i e s  

Also, we 
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gained fu r the r  experience i n  analysis  by examining the  energy-storage 
requirements f o r  pulsed arc  guns which operate a t  a f e w  hundred vol t s .  

I n  t h e  conventional coaxial  gun program, severa l  experiments 

The current  sheet propagated much the  same as i n  the  

A t  t h i s  po in t  t he  character of the  current  sheet 

were performed using a gas-triggered gun with a single set of gas p o r t s  
near t he  breech. 
uniform-fi l l  experiments u n t i l  it approached the  region where the  gas 
densi ty  dropped. 
changed: the  leading edge of the  current sheet accelerated while t he  
t r a i l i n g  por t ion  did not. We were generally d i s s a t i s f i e d  with the  amount 
of  parametric cont ro l  ava i lab le  over the  gas d i s t r ibu t ion ,  bu t  encouraged 
by a l ack  of spoke i n s t a b i l i t i e s .  
which i s  described i n  the  next section. 

A more v e r s a t i l e  t h r u s t o r  w a s  b u i l t  
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4.0 COAXIAL THRUSTORS 

4.1 Introduction 

The previous sect ion shows tha t  most of our t h rus to r  develop- 
ment has centered upon the  coaxial  rail gun i n  which the  plasma i s  ac- 
celerated by the  s t roke of a magnetic f i e l d  "piston". 
thrustor, theo re t i ca l  considerationsl3, 14 have shown the super ior i ty  of 
a pre-discharge propel lant  d i s t r ibu t ion  ( t h e  s lug model) which i s  loca l ized  
i n  a compact volume a t  the start  of the stroke. Our earlier experiments 
with slug accelerat ion were interrupted because the discharge collapsed i n t o  
i n e f f i c i e n t  i n s t a b i l i t i e s .  
uniform mass loads l ed  t o  calorimetric e f f i c i enc ie s  near 5% over a wide 
range of  plasma outputs. 
t i o n  would probably l i m i t  performance t o  t h a t  l eve l .  

For t h i s  type 

Extensive work on gas-triggered th rus to r s  with 

Analysis indicated t h a t  energy l o s t  through radia-  

I n  t h i s  period, experiments with non-uniform propel lant  d i s t r i -  
but ions were renewed with two goals, t o  avoid i n s t a b i l i t i e s  and t o  demonstrate 
improved dynamic e f f ic iency  due t o  proper propel lant  loading. 
ments f a l l  i n t o  three classes.  
nature of  t he  propel lant  d i s t r ibu t ion  and t h e  nature of t he  discharge, i n  
pa r t i cu la r ,  i t s  s t a b i l i t y .  The th rus to r  performance w a s  judged by means of 
t h e  calor imetr ic  efficiency. In  the  second grou2 of experiments, the ove ra l l  
t h r u s t o r  e f f ic iency  and t h e  spec i f ic  impulse were determined from measure- 
ments o f  th rus t ,  mass flow rate, and power. A la rge  number of parametric 
changes were made i n  the  thrus tor  design and the  mode of operation i n  
order  t o  improve the  th rus to r  performance. 
t he  cons t ra in t  t o  follow the  slug-model, rail-type th rus to r  w a s  relaxed. 
The propel lan t  loading w a s  changed from a r a d i a l  in jec t ion  a t  the  insulator ,  
t o  a x i a l  i n j ec t ion  a t  various locat ions along t h e  ax is  of  the  electrodes.  
A parametric program of t h r u s t  e f f i c i enc ie s  and spec i f ic  impulse measure- 
ments w a s  then accomplished. 

The experi-  
The f i r s t  experiments d e a l t  w i t h  the 

I n  the  t h i r d  phase of the  program, 

4.2 Thrustor Experiments, R a d i a l  Propellant In jec t ion  

The object ive of t h e  following experiments w a s  t o  study the  
performance of a th rus to r  with a non-uniform propel lant  d i s t r ibu t ion .  
The propel lan t  d i s t r ibu t ion  w i t h i n  t h e  b a r r e l s  was measured as a function 
o f  t i m e  and correlated with the ins tan t  of t he  th rus to r  discharge. 
enchance t h e  cont ro l  over the propel lant  input, t he  t i m e  delay between the 
gas  in j ec t ion  and t h e  thrus tor  discharge w a s  programmed. 
ac t ing  gas valve w a s  b u i l t  i n to  the thrustor .  The delay of t he  discharge 
w a s  accomplished by operating t h e  thrus tor  i n  a voltage-switched mode. 
The voltage switch i s  not p rac t i ca l  f o r  a space mission but  i s  convenient 
f o r  these s tudies .  P rac t i ca l  means for t r igger ing  the th rus to r  do ex i s t .  

To 

Also, a fast- 
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The electrode configuration, gas valve assembly, and voltage 
switch are shown i n  Figure 1, and a photograph of t h e  th rus to r  and a 
capaci tor  i s  shown i n  Figure 2. The anode and the back flange are con- 
nected t o  the  capacitor.  The cathode i s  held a t  anode p o t e n t i a l  by a 
2200 Q bleeder r e s i s t o r  u n t i l  the  spark gap f i r e s .  
by a surface i g n i t o r  i n  the  face of one electrode. 
driven eddy-current type gas valve opens t h e  propel lant  plenum. 
i s  s tored i n  a pulse l ine ,  with 181 pF capacitance, 5.6 rd2 impedance, and 
a pulse t i m e  of 2.2 psec. 

The gap i s  t r iggered 
An electromagnetically- 

The energy 

I n  the  following experiments, t he  propel lant  w a s  nitrogen. 
The propel lant  d i s t r ibu t ion  was measured with a fas t -ac t ing  ionizat ion 
gauge. 
meter in t e rva l s  along the  axis. 
barrels are shown i n  Figure 3. 
t h e  gas po r t s  a t  e a r l y  times and then broadens i n t o  a nearly uniform dis -  
t r ibu t ion .  The propel lant  inventory per  shot i s  shown i n  Figure 4. 
propel lant  first appears a t  the  por t s  80 psec after t h e  gas valve i s  
t r iggered,  and 400 psec later, 9% of the  propel lant  has l e f t  the  plenum. 
The flow i n t o  the  plenum i s  r e s t r i c t e d  so that the  plenum empties during 
t h e  valve cycle. 

The neut ra l  gas density was measured a t  three  r ad i i  a t  one cent i -  
The da ta  taken near t h e  inner and outer  

A non-uniform gas d i s t r ibu t ion  e x i s t s  over 

The 

The 6 ~ ~ 6  ionizat ion gauge i s  non-linear a t  high dens i t ies .  I n  
order  t o  map the propel lant  d i s t r ibu t ion  close t o  the gas ports ,  it is 
necessary t o  reduce t h e  plenum pressure below t h a t  necessary for t h rus to r  
f i r i n g .  
60 Torr; the thrus tor  experiments, however, were run a t  plenum pressures 
of  600 Torr t o  4 a t m .  
became r e l a t i v e l y  heavier a t  the  outer b a r r e l s  near the  insulator .  The 
lat ter w a s  observed by always locat ing the  gauge such t h a t  i t s  response 
remained l i nea r .  The conclusion i s  made t h a t  a non-uniform gas d i s t r i -  
bu t ion  exists f o r  several hundred microseconds. A t  the barrel ex i t ,  t he  
gauge output w a s  proport ional  t o  plenum pressure up t o  a t  l e a s t  600 Torr, 
and it w a s  possible  a t  600 Torr t o  subs tan t ia te  t he  propel lant  inventory 
of Figure 4. 

The da ta  i n  Figures 3 and 4 were taken a t  a plenum pressure of 

A t  plenum pressures above 60 Torr, the  mass loading 

4.2.1 Nature of Discharge 

The th rus to r  could be f i r ed  i n  the  range 80 psec < t < 500 psec 

Thus the  voltage-switched th rus to r  could be operated with a 
where the  f i r i n g  delay, t, i s  referenced t o  the  in s t an t  of the  gas valve 
t r i g g e r .  
v a r i e t y  of non-uniform propel lant  d i s t r ibu t ions .  
cu r ren t  sheet was general ly  found t o  occur only f o r  t less than 125 psec. 
By short ing t h e  spark gap, or switching very ear ly ,  t he  gun w a s  found t o  be 
propel lant- t r iggered near t = 100 psec. 
loss of a x i a l  symmetry i n  t h e  magnetic f i e l d  d i s t r ibu t ions  and i n  the  
luminosity of t he  discharge. 

I n s t a b i l i t y  i n  the  

An i n s t a b i l i t y  w a s  evidenced by 

I 
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The da ta  which follow demonstrate t he  axial symmetry and 
t h e  general  nature of t he  th rus to r  discharge. 
walls were negligible.  The azimuthal magnetic f i e ld ,  Be, was measured 
simultaneously by two probes located a distance, z, from the  in su la to r  
and on diametr ical ly  opposite s ides  of t he  cathode. The oscillograms, 
i n  Figure 5 ,  give superposit ions of  t h e  integrated probe signals,  pro- 
po r t iona l  t o  B e ( t ) ,  taken at 2 cm intervals i n  the  axial ( z )  d i rec t ion  f o r  
var ious delays. The length  of t h e  ba r re l s  was 5 cm. Similar  oscillograms 
are presented i n  Figure 6 under t h e  condition of higher capaci tor  voltage 
and higher plenum pressure. 
current  sheet  propagates i n  a s tab le  and symmetric fashion over twice the  
b a r r e l  length; the  second photograph, taken a t  a high gain, demonstrates 
t h e  exis tence of the current  sheet  up t o  a distance of 30 cm. 
current  sheet of smaller amplitude i s  a l so  seen i n  both photographs. 

Currents t o  the  tank 

The f irst  photograph shows again t h a t  the 

A second 

Photographs showing t h e  time integrated luminosity p r o f i l e s  i n  
the discharge a r e  given i n  Figure 7. 
vol tage and current,  see Figure 8 ,  show that the  discharge i s  nearly 
c r i t i c a l l y  damped. 
l i n e  type behavior of t h e  capacitor.  

The measurements of t h e  th rus to r  

The s teps  i n  the  voltage waveform indica te  the  pulse- 

Since the  voltage-switched th rus to r  could operate on non- 
uniform propel lant  d i s t r ibu t ions  without i n s t a b i l i t i e s ,  o ther  measurements 
were s t a r t ed .  A re-entrant  calorimeter of  58 cm diameter w a s  placed 25 cm 
from t h e  muzzle. The calorimeter was e l e c t r i c a l l y  isolated:  i t s  presence 
d id  not  a f f e c t  t he  voltage, current,  o r  t he  luminosity p r o f i l e  of  t h e  
thrus tor .  Calorimetric eff ic iency,  defined as the  energy i n  the  calorimeter 
divided by the  energy i n  the  capacitor, w a s  measured a t  d i f f e r e n t  f i r i n g  
delays, capacitor voltages and plenum pressures. 
Figure 9. Peak calor imetr ic  e f f i c i enc ie s  of 65$ were observed a t  f i r i n g  
delays of 200 t o  250 psec. 
t o  be about l@. 
t r i g g e r ,  we would expect t o  achieve calor imetr ic  e f f i c i enc ie s  of 7@. 

The results are given i n  

The energy l o s t  i n  t he  spark gap was measured 
By replacing the  spark gap t r i g g e r  with an e f f i c i e n t  

The drop i n  e f f ic iency  a t  longer firing delays i s  consis tent  
w i t h  a measured decrease i n  the number of  exhaust ions and a decrease i n  
the i o n  velocity.  
cup placed on axis 87 cm from the  muzzle of  t he  thrus tor .  
are given i n  Figure 10. 
the i o n  current  pe r  u n i t  area. 
i o n  ve loc i ty .  The s igna l  i n  the  lower beam varies as t h e  ion  flux per  shot 
p e r  unit area. 
u n i t s  of each beam. The decrease i n  t h e  average ve loc i ty  and i n  the  number 
o f  ions as the  f i r i n g  delay increased was found t o  be more severe f o r  
h ighe r  plenum pressures.  
earlier measurements off  axis gave similar results. 

The proper t ies  of the exhaust were measured by a Faraday 
Typical results ' 

The s igna l  i n  t h e  upper beam i s  proport ional  t o  
Time of f l i g h t  i s  used t o  estimate the  average 

The r e l a t i v e  oscil loscope gains are given i n  a r b i t r a r y  

Although these observations were taken on axis, 
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4.2.2 Thrustor Performance 

Because of t he  high calorimetric eff ic iency,  it w a s  meaningful 
t o  start t h r u s t  e f f ic iency  measurements. The th rus to r  c i r cu i t ry ,  in -  
cluding a new 140 cl;F capaci tor  w a s  constructed t o  f i t  onto t h e  t h r u s t  
stand in s ide  t h e  vacuum chamber. 
i n j ec t ed  pe r  shot, and t h e  energy stored i n  the  capaci tor  pe r  shot were 
measured. 
impulse, T/gi, were determined. 
nominally 0.1 sec-1. 

The th rus to r  impulse p e r  shot, t he  mass 

From these,  t h e  t h r u s t  efficiency, $/2mP, and t h e  spec i f i c  
The discharge r e p e t i t i o n  rate was 

The thrust balance i s  described i n  Section 8.1.1. For a l l  
measurements i n  t h i s  report ,  the  th rus t  balance was operated as described 
i n  Section 8.1.2. 
determined by means of a pressure and volume measurement. 
f o r  a volumetric measurement of t h e  injected gas i s  described i n  Section 
8.20 
which w a s  s tored i n  the  capacitor was determined by the  charging voltage 
and the gun-capacitance (140 pF). 

The t o t a l  mass per shot injected i n t o  t h e  gun w a s  
The device 

The e l e c t r i c a l  energy The accuracy of t h e  h measurement i s  5%. 

Measurements were performed with nitrogen and xenon as pro- 
pe l l an t s .  The s tored energy w a s  varied between 160 and 700 joules, 
and the  in jec ted  mass pe r  shot between .02 and .4 mg for t he  nitrogen 
runs and between .O7 and 2 mg f o r  t he  xenon runs. 
level w a s  between 150 and 1000 dyne-sec f o r  nitrogen and between 300 and 
1200 dyne-see f o r  xenon. 
750 and 15000 sec and between 350 and 8000 sec f o r  xenon. 

The measured impulse 

The spec i f ic  impulse f o r  nitrogen var ied between 

A t  each p a r t i c u l a r  plemm pressure and capaci tor  voltage the  

A t  t h i s  optimum delay time the  t h r u s t  
delay time between gas in j ec t ion  and gun switching w a s  var ied u n t i l  t h e  
m a x i m u m  t h r u s t  value w a s  found. 
e f f i c i ency  and spec i f ic  impulse were determined. 

I n  the f i rs t  series of measurements, t h e  barrel arrangexents 
shown i n  Figure 11 were used. 
Table I and again i n  Figure 12 f o r  two of t he  gun models. 
shows the t h r u s t  e f f ic iency  as a function of t he  spec i f i c  impulse. 
l i n e s  connect the da ta  taken a t  d i f f e ren t  capaci tor  voltages, bu t  near ly  
t h e  same in jec ted  mass. The so l id  l i n e s  connect dat& taken w i t h  t he  
b a r r e l s  shown i n  Figure 11( a) ( a l s o  Figure 1). The dashed l i n e s  connect 
d a t a  taken with the  inner  b a r r e l  of  Figure U(a) and the  outer  b a r r e l  of  
Figure U ( d )  . 
of  Figure 11. 

Experimental results are presented i n  
Figure 12 

The 

Similar  results were obtained with the  other  geometries 

-6 The background pressure i n  the  tank w a s  less than 10 Torr. 
A t  th i s  low pressure there does not e x i s t  a gas reentrainment problem 
during the  shot.  
face of  cathode, anode, and back insulator .  The problem of propel lant  
a d d i t i o n  from these walls was investigated because t h e  f i rs t  shots of a 
series, after several minutes down-time, showed a higher t h rus t  than the  
la ter  shots.  This l eve l l ed  off  t o  a s t ab le  plateau value after about 20 
shots  had been f i r e d  a t  a r epe t i t i on  rate of 1 shot every 10 sec o r  faster. 

Between shots, however, gas can be adsorbed a t  t h e  sur- 
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Experiments were done w i t h  baked-out i n su la to r s  and b a r r e l s  
which were preheated immediately before a shot, t o  6oo0c f o r  several 
minutes, by quickly removable co i l s .  
i n  a tes t  series diminished considerably, bu t  t h e  p la teau  values were 
unchanged. 

The impulse of t h e  i n i t i a l  shots 

These p la teau  values are presented i n  Figure 12. 

I n  t h i s  work the boron n i t r i d e  in su la to r  was found t o  outgas 
about lo1' p a r t i c l e s  per second during the  preheating process. It w a s  
replaced by a glazed aluminum oxide insulator ,  which i s  impervious t o  
water vapors. The erosion rate i n  t h i s  t h rus to r  w a s  not measured, bu t  
i s  expected t o  be small, based upon v isua l  observations after lo5 shots  
and measurements i n  a va r i e ty  of  similar devices operating a t  1-2 kV, 10 
amps, and having discharge times of  a f e w  psec.l5 

4 

Faraday cups were mounted one meter from the  th rus to r  on a 
The ion  f l u x  per  u n i t  area per shot w a s  measured as a ro t a t ing  arm. 

function of angle from 0' t o  90' relative t o  t h e  t h r u s t o r  axis. A 
t y p i c a l  run i s  shown i n  Figure 13. The confinement of t he  beam i s  
r e l a t i v e l y  good f o r  pulsed plasma thrustors .  

4.2.3 Fas te r  Propel lant  In jec t ion  

A comparison of  the propel lant  inventory f o r  nitrogen (Figure 4) 
and t h e  optimum delay times f o r  maximum t h r u s t  (Table I), shows t h a t  less 
than  60$ of the  propel lant  w a s  used i n  the  accelerat ing process. 
d i r e c t  e f f ic iency  loss  could be charged t o  the  slowness of t he  valve and 
i t s  less-than-optimum loca t ion  and port  arrangement (Figure 1). 
the t h r u s t o r  performance w a s  otherwise general ly  good,a program f o r  
better propel lan t  i n j ec t ion  w a s  undertaken. 

This 

Since 

The ferromagnetic core valve described i n  Section 6.1 had 
a l ready  been b u i l t  and tes ted .  
i n  Figure 14. The cathode w a s  at tached t o  t h e  face  of the  valve body by 
t h r e e  t h i n  r a d i a l  copper f ins ,  thus allowing an optimal open s t ruc tu re  
f o r  t h e  gas ports .  

It was incorporated i n t o  t h e  gun as shown 

I n  comparison t o  the  previous eddy-current type valve, t he  valve 
i n  Figure 14  opens faster because of the better use of t h e  electromagnetic 
forces,  and closes  faster by the a i d  of the  pressure force ac t ing  a t  the 
back of t h e  diaphragm as t h e  reservoir  empties. 
valve for nitrogen and xenon i s  demonstrated i n  Figure 15. 
measurements, t he  cathode w a s  removed, and a CK 5702 ion iza t ion  gauge w a s  
placed as close as poss ib le  (.5 cm) t o  the valve output. The valve opens 
or c loses  i n  about 100 psec and t h e  t o t a l  open-time i s  less than 250 psec. 
The de lay  time between t r igger ing  the valve c i r c u i t  ( t i m e  zero i n  Figure 15) 
and t h e  appearance of the gas i n  f ront  of t h e  valve w a s  180 psec. 

The operation of t h e  
For these 

Since t h e  neu t r a l  gas spreads out  i n t o  the in te re lec t rode  re- 
g ion  wi th  e s s e n t i a l l y  i t s  sound velocity,  it w i l l  have t r ave l l ed  a d i s -  
tance  of only 7.5 cm i n  t h e  case o f  nitrogen and 3.4 cm i n  the  case of 
xenon before  the  valve has closed completely. This f a c t  i n  connection 
wi th  the open s t ruc tu re  of the  gas por t s  should allow a close approximation 
o f  t h e  slug model propel lant  d i s t r ibu t ion .  
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Density measurements of  t h e  neu t r a l  gas were taken with t h e  
CK 5702 fast  ion iza t ion  gauge technique. The CK 5702 i s  smaller than 
the 6 ~ ~ 6  used previously (Figures 3 and 4) and has a g rea t e r  range of 
l inear i ty .15 
where the propel lant  d i s t r ibu t ion  i s  p lo t ted  on a fu l l - sca le  drawing of the  
in te re lec t rode  region. The black poin ts  between cathode and anode re- 
present  t h e  various loca t ions  of  t h e  fast ion iza t ion  gauge. 
above these poin ts  give the  neut ra l  gas dens i t i e s  ( i n  a r b i t r a r y  u n i t s )  
a t  300, 400, and 500 psec after the  valve c i r c u i t  has been triggered. 
Note that the amplitude u n i t s  of these curves are not t h e  same: 
r a w  da t a  has  been mult ipl ied by 1/9, 1/4, and 1 f o r  t h e  300, 400, and 
500 psec curves, respectively.  

The measurements w i t h  nitrogen are shown i n  Figure 16, 

The curves 

t h e  

The slug model seems t o  be bes t  approximated a t  a delay t i m e  
of 400 psec. 
t h i r d  of  t h e  anode length, and t h e  valve has a l ready closed. 
t h e  loca t ion  of  t he  gas po r t s  i s  extended i n  f ron t  of t h e  in su la to r  by 
2 cm. 
su l a to r  which could have moved the  slug fu r the r  downstream. 
d i s t r i b u t i o n  shows, however, t h a t  an extension of 1 cm would have been 
su f f i c i en t .  
as indicated by t h e  dotted l i n e  without dis turbing the  d is t r ibu t ion .  

A t  t h i s  time the  gas i s  s t i l l  concentrated i n  the  f i rs t  
Note t h a t  

This w a s  done i n  order t o  avoid a pressure bu i ld  up a t  the  in-  
The densi ty  

It a l s o  suggests that the back in su la to r  might be contoured 

Thrust e f f ic iency  measurements were made w i t h  nitrogen as the  
propel lant .  
measurements are l i s t e d  i n  T a b l e I I .  The delay t i m e  i s  again t h e  optimum 
i n t e r v a l  between t h e  t r igger ing  of the  valve c i r c u i t  and the  breakdown 
of t h e  discharge. 

The mass loading and energy per shot w a s  varied.  The 

The result of these  measurements i s  t h a t  t he  t h r u s t  eff ic iency 
i s  a l i t t l e  lower compared t o  the  data  taken w i t h  the slower valve 
(Figure 12). 
(delay time 2 400 psec) t h e  valve had closed completely before the  gun 
f i red ,  i n  o the r  runs (delay t i m e  = 300 psec) t h e  valve was s t i l l  i n  the  
c los ing  process. Thus even though most of t he  propel lant  was ava i lab le  
t o  t h e  discharge, t h e  performance did not improve. 

The optimal delay time here was such t h a t  i n  some runs 

I n  an t i c ipa t ion  of  t he  experiments t o  be reported i n  the  next 
sect ion,  the ferromagnetic core valve assembly was constructed i n  such 
a way that the loca t ion  of t h e  r ad ia l  gas in j ec t ion  poin t  could be moved 
stepwise downstream. This was simply done by incorporating extension 
r i n g s  between t h e  valve and t h e  cathode flange of t he  capacitor.  The 
l o c a t i o n  of t h e  valve with respect  t o  t he  gas p o r t s  did not change. 
Measurements were performed for one set of operat ional  conditions, using 
n i t rogen  as propellant.  
L means t h e  dis tance between the  insu la tor  of t he  gun and the  gas in j ec t ion  
point .  
moved downstream. 

The measurements are presented i n  Table 111. 

The results show a t rend toward lower e f f ic iency  if t h e  valve i s  
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4.3 Thrustor Experiments, Axial Propel lant  In j ec t ion  

4.3.1 Apparatus and Performance 

Signi f icant  improvements i n  t h e  e f f ic iency  of pulsed plasma 
acce lera tors  have been reported b y  the General E lec t r i c  Company.l5 The 
increase i n  performance has been a t t r i bu ted  i n  la rge  p a r t  t o  a par t icu-  
lar  mode of  propel lant  i n j ec t ion  and engine igni t ion.  The propel lan t  i s  
in j ec t ed  ax ia l ly ,  a t  some dis tance from the  insulator ,  and after nearly 
complete inject ion,  the engine i s  igni ted by aux i l i a ry  e l e c t r i c a l  
sparkers. 

I n  contrast ,  our acce lera tor  development program has featured 
r a d i a l  propel lant  inject ion,  a t  t h e  insulator ,  and engine ign i t i on  by 
control led e l e c t r i c  f i e lds .  Other parameters i n  t h e  two programs, such 
as gun geometry, capacitance, and voltage have been similar. 

I n  t h e  f inal  phase of t h i s  contract ,  and then under Convair 
support, w e  have sought confirmation of the advantage of the ax ia l -  
inject ion,  sparker-triggered mode. This could be done simply by 
changing the b a r r e l  geometry, and the mode of operation of our device. 

The new configuration i s  out l ined i n  Figure 17. The gas 

The aux i l i a ry  sparkers are needed because, with axial 
valve i s  t h e  ferromagnetic core valve of Figure 14, operating as shown 
i n  Figure 15. 
in jec t ion ,  the  gun does not f i re  at the voltages and mass loads of i n t e r -  
est. The sparker e lectrodes are ins t a l l ed  through the  back insulator ,  
and are powered by a 26 kV, 6 joule pulse. 
t r iggered  at a variable delay with respect  t o  the gas valve t r i g g e r  pulse. 

The discharge could be 

I n  a l l  experiments on t h i s  device, t he  propel lant  w a s  xenon. 
The experiments were conducted i n  the manner described i n  EPction 4.2.2. 
The n e u t r a l  gas d i s t r i b u t i o n  i s  p lo t ted  i n  Figure 18 f o r  a delay time 
o f  850 bsec which i s  close t o  the delay t i m e  f o r  optimum thrus t .  
t h i s  delay t i m e ,  t h e  valve has  long been closed, and almost a l l  t he  pro- 
p e l l a n t  i s  ava i lab le  t o  t h e  discharge. 
in te re lec t rode  region at an angle o f  45' with respect t o  the  axis. 

A t  

The gas spreads out  i n t o  t h e  

The da ta  from the  thrust ef f ic iency  measurements are given 
i n  Table I V .  
mate, and were taken from Faraday cup signals.  I n  general, t h e  performance 
i s  comparable t o  o r  lower than experienced with t h e  r a d i a l  i n j ec t ion  
t h m s t o r s .  

The average exhaust v e l o c i t i e s  of t h e  ions are approxi- 

I n  addi t ion  t o  t h e  performance measurements, some da ta  on t h e  
A t y p i c a l  Faraday cup s igna l  taken a t  4 m down- exhaust are presented. 

stream i s  shown i n  Figure 19. 
IV, and represents  the exhaust 
loading conditions. Upper and 

This s igna l  belongs t o  run No. 91, Table 
from the  low gun voltage and medium-mass 
lower beams show t h e  same signal,  b u t  on a 

33 



t . 24 CM .-I 

25 CM 

FIG. 17 : OUTLINE OF THE ACCELERATOR WITH 
AXIAL INJECTION AND SPARKER TRIGGERS 

1 4  



I 

1 
I 

i 
1 

I 

1 

I 

I 
1 

I 
I 

i 
i 
1 
I 
I 

I 

I 
I 

I 

1 
I 
I 

I 

I 
i 
I 

I 

I 

\ 

L .. 



I 

W 

n 
M 

n 
0 

% 
W 

t!? 
H 

0 

5 
ffi 

I I I M A  I L n L n  I d a  Ln I t- I I C 0  I 
rl 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
L n ~ ~ I n L n L n o L n L n o L n L n L n n L n o n L n o  c o c o a 3 a c o c o F c o a C 0 c o c o c o a C 0 F c o a 3 t -  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
d a 3 A -  cu m r l  r l c o  0 n o  m a  m m r l m m A -  
r l r l  r l c u c u C U C U ( u M N M M M d d A = t L n M  



1 
t =  0 

U 
20,usec 

FIG. 19 : FARADAY CUP SIGNALS FOR RUNSI ,  
TABLE (FLIGHT DISTANCE 4 m )  

37 



I 

d i f f e ren t  time sca le  (50 psec/cm and 10 psec/cm). 
with a pulse f r a m  the  discharging gun capacitor.  
t r ans i en t s  are seen a t  t h e  beginning of t he  s igna l  (between 0 and 10 psec). 
When t h e  plasma ar r ives ,  a la rge  amplitude peak can be seen which i s  
expanded i n  the  lower beam. The meaning of t h i s  peak has not been inves t i -  
gated yet. 

The scope was t r iggered  
The corresponding 

The average plasma veloci ty  i s  about 3 cm/psec. 

The plasma beam spread was measured with t h e  ro t a t ab le  Faraday 
cup f o r  two d i f f e r e n t  mass loadings and th ree  d i f f e r e n t  capaci tor  voltages 
(Figure 20) 
placed i n  t h e  center. 

The radius  of  t he  ro ta t ion  arm was 80 cm with the  gun being 

4.3.2 Comparison with Other Experiments 

For t h e  preceedin experiments, w e  designed the hardware t o  
dupl ica te  t h e  G. E. enginel! as closely as possible  i n  the  t i m e  available. 
The G. E. engine i s  shown i n  Figure 21  and i s  t o  be compared with our 
device i n  Figure 17. The geometries are qui te  similar, except f o r  t he  
loca t ion  of t he  insulator .  The gun capacitances are iden t i ca l  within 3% 
and the  terminal connections a re  both coaxial  and minimal i n  inductance. 
Xenon is  used as propel lant  i n  both guns, and the same technique i s  used 
f o r  measuring propel lant  dis t r ibut ion.  We f ind  t h a t  about 9 6  of the  pro- 
p e l l a n t  loading i s  avai lable  t o  the discharge a t  a f i r i n g  delay of about 
850 psec which i s  optimum with respect t o  th rus t .  
stream i s  about 450 from the  gun axis.  
by G. EO15 

The main propel lant  
Similar  conditions are reported 

I n  t h e  f i r s t  experiments, w e  used th ree  sparkers connected i n  
series a t  a place corresponding t o  t h a t  i n  t h e  G. E. gun. 
two sparkers were used, as shown i n  Figure 17. The d i f f e ren t  arrangement 
gave better r e l i a b i l i t y  i n  t h e  f i r i n g  of t he  gun, bu t  t he re  were no 
changes i n  performance. 

A t  lower A, 

The performance, measured a t  Philadelphia, of the G. E. engine 
zmd the perforrance, ;r,easxred a t  San Diego, ef t h e  Cmvair engine are 
compared i n  Figure 22. 
o f  t h i s  repor t  and Figure 11-Ll of  the  repor t  i n  Reference 15. 
l a b e l l e d  by voltage values, connect runs taken a t  the  same voltage. The 
d a t a  po in t s  are l abe l l ed  by mass in jec t ion  values, mg/sec (G. E.) and 
%/shot (Convair). Taking in to  account t he  G. E. r e p e t i t i o n  rate of  t e n  
shots/sec, it i s  seen that i n  some of t he  runs, the same capacitor voltage 
and mass in jec ted  per shot were used i n  both labora tor ies .  By comparing 
the o v e r a l l  trends,  it i s  obvious that t h e  G. E. results have not be re- 
produced. 

The da ta  f o r  Figure 22 are taken from Table TV 
The l ines ,  

The e f f ec t  o f  r epe t i t i on  rate i s  not l i k e l y  t o  be ser ious over 
the range of i n t e re s t .  G. E. 15 and Convair (Section 4.2.2) both repor t  
changes i n  performance i f  the  in t e rva l  between shots  i s  tens  of seconds. 
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-. 20 CM 

POSITION OF w 1  DETAILS IN 

REF. 15,FIG. IT - I S P A R K E R  

FIG. 21 : OUTLINE OF THE G.E.  ACCELERATOR 
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1 

N e i t  e r  group has ye t  checked the  e f f e c t  over t h e  complete range of 10 
sec t o  .1 sec'l, which i s  not d i r ec t ly  simple because of t he  necessi ty  
f o r  changes i n  the instrumentation. G. E. repor t s  no difference between 
10 sec-l  and 1 sec-l .  
.3 sec'l and .05 sec-l, and only a minor change i n  performance i f  t h e  
r epe t i t i on  rate i s  -02 sec-1. 

-9 
We observe no e f f e c t  i n  t h e  i n t e r v a l  between 

Faraday Cups have been used i n  the  exhaust of both th rus to r s  
t o  measure t h e  flux of ions. The r e l a t ive  amplitudes of t he  ion current  
versus f l i g h t  time are similar i n  both labora tor ies  f o r  runs taken under 
approximately t h e  same conditions. Thus t h e  average ve loc i t i e s  of t he  
ions are comparable. The angular spread about t he  th rus to r  ax is  of the  
ion ic  component of t he  beam i s  somewhat less a t  the  G. E. laborator ies .  

Experiments which could give other  poss ib le  diagnost ic  compari- 
sons have not ye t  been coiducted. 

One of two a l t e rna t ive  conclusions i s  possible:  

EITHER (1) an e r r o r  i n  thrus t ,  mass flow rate, o r  power 
measurements has been made i n  one of t he  
labora tor ies  

OR (2)  t h e  two devices a re  t r u l y  qui te  d i f f e r e n t  i n  
operating charac te r i s t ics .  

If a l t e r n a t i v e  (1) i s  t rue,  then t h e  iden t i f i ca t ion  of the 
spec i f ic  measurement e r r o r  would probably strengthen the whole 
technology of  t h rus to r  measurements. 

If a l t e r n a t i v e  (2) i s  t rue ,  then the  remarkable difference i n  
performance ~f .the devices i n  Figures 17 and 2 1  would have resul ted from 
a d e t a i l  of ccnstruct ion which i n  i t s e l f  would be important t o  discover 
and understand. 

4.4 Summary and Conclusions 

I 

I 

The conclusions t o  be drawn from these measurement3 are:  

1. The Z i r i n g  of t he  voltage-switched th rus to r  can be t imed  
over a range of severa l  hundred psec after propel lant  in jec t ion .  

2. A t  t h e  earliest firing t i m e ,  equivalent t o  the  propel lant-  
t r i gge red  mode, very l i t t l e  of the propellant I s  i n  the  barrels and i s  
loca ted  p r inc ipa l ly  a t  the  insulator .  Spoke i n s t a b i l i t i e s  then occur. 

3. The t h r u s t o r  w i l l  f i r e  i n  an a x i a l l y  symmetric, s t ab le  
manner over an i n t e r v a l  i n  which the neu t r a l  gas  d i s t r ibu t ion  changes 
from the slug-model approximation t o  a nearly uniform dis t r ibu t ion .  

4. The capaci tor  discharge i s  approximately c r i t i c a l l y  damped. 
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5. The calor imetr ic  efficiency, referenced t o  t h e  stored 
energy, increases with capacitor voltage and i s  r a t h e r  insens i t ive  t o  
plenum pressure. The peak calorimetric e f f i c i e n c i e s  of 6576-76 occur 
f o r  propel lant  d i s t r i b u t i o n s  which are approximations t o  the slug- 
model. 

6 .  The average exhaust veloci ty  and t h e  nuniber of ions i n  
t h e  exhaust are g r e a t e r  f o r  firing delays at which the slug-model approxi- 
mation i s  valid.  

7. A f t e r  extensive parametric studies,  t h e  o v e r a l l  e f f ic iency  
of the  coaxial  gun with r a d i a l  propellant i n j e c t i o n  can be c l a s s i f i e d  as 
t y p i c a l l y  20-3q0 a t  a11 I of 5000 seconds. 

SP 
8. I n  the  experiments with t h e  axial in jec t ion  - e l e c t r i c a l l y  

t r iggered accelerator,  the eff ic iency w a s  found t o  be t y p i c a l l y  10-26 
a t  an I of 5000 seconds. 

SP 

9. The average axial veloci ty  of t h e  ions i n  t h e  exhaust i s  
g r e a t e r  than the  average veloci ty  calculated from t h e  spec i f ic  impulse 
by as much as a f a c t o r  of two. 
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5 00 PULSED ARC THRUSTOR 

5.1 Introduct ion 

A pulsed version of the  MPD a rc  was or iginated by t h i s  group 

The e s s e n t i a l  fea ture  i s  a s ta t ionary  cur ren t  sheet through 
about two years ago, and the  i n i t i a l  experiments with it have been pub- 
1 i shed . l l  
which propel lant  i s  fed and accelerated. 
s ta t ionary  process i s  readi ly  var iable  and typ ica l ly  has a value of 10-3 
see. These cha rac t e r i s t i c s  dis t inguish t h e  pulsed a rc  th rus to r  from the  
conventional coaxial  plasma thrus tor  (where the  pulse  time, 1-10 psec, i s  
determined by the  t r a n s i t  t i m e  of a current  sheet moving over the  length 
of  t h e  electrode) .  

The pulse length i n  t h i s  quasi- 

The object ives  of the  experiments t o  be described were: 

(a) t o  determine t h e  performance p o t e n t i a l  of t he  pulsed a rc  
device as a thrus tor  and 

(b) t o  perform diagnostic measurements leading t o  an under- 
standing of t he  accelerat ion process i n  t he  s ta t ionary  current-  
sheet mode. These measurements were a l so  expected t o  con- 
t r i b u t e  t o  the  understanding of t he  continuous MPD a rc  but  
which are more d i f f i c u l t  t o  perform i n  a steady-state 
discharge. 

The apparatus consis ts  of coaxial  electrodes,  a Fulsed gas 
valve and a lumped parameter LC discharge l i n e  as power su2~L-r. 

Earlier experiments were performed with an electrode geomecry 
similar t o  the  MPD arcs.l l  The performance as Judged from calorimetric 
and o the r  exhaust measurements was the same or lower than t h a t  reported 
f o r  the continuous MPD arc .  

A r e l a t i v e l y  l a rge  amount of  erosion was observed a t  the  cathode 
which could not be eliminated by shaping t h e  cathode i n  d i f f e ren t  ways 
(hollow, conical)  or by chosing d i f f e ren t  cathode materials such as copper, 
tungsten, o r  thor ia ted  tungsten. Also t he  geometry was not convenient for 
probing the discharge. 

Several  modifications were made: 

The cathode diameter w a s  increased t o  t r y  t o  reduce erosion. 

A faster gas valve was i n s t a l l e d  and the  valve-gas-port 
arrangement was modified so t h a t  the in jec ted  mass flow 
i n t o  the  th rus to r  was constant fo r  most of t he  discharge 
and could be cal ibrated i n  a simple way. This calibra- 
t i o n  allowed a comparison of the  eroded mass with the gas 
input  

The in te re lec t rode  space w a s  increased t o  allow access 
f o r  probes. 
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It w a s  found t h a t  with nitrogen and argon as propellant,  t h e  
gun current  and voltage, t h e  ion  energy and ion densi ty  i n  the  exhaust 
were independent of t he  mass flow rate .  With helium as a propel lant  
these parameters turned out  t o  be a function of t he  mass flow rate. 
Therefore, helium seemed t o  carry grea te r  promise f o r  optimizing the 
thrustor ,  from the  poin t  of view of  invest igat ing phenomena t h a t  are 
sens i t i ve  t o  propel lant  flow, thus helium was chosen as propel lant  f o r  
a l l  experiments reported i n  the  following. 

5 02 Experiments 

I 

The experiments were performed i n  a stainless steel vacuum 
tank of  about 1 x 1 x 2 m i n  dimensions. 
one erid of the  tank but  completely insulated from t he  tank w a l l .  
currents  were reduced t o  less than 1% of t h e  a r c  current  by placing a n  
insu la t ing  s k i r t  around the  anode and by insu la t ing  the  end d me of t he  
vacuum tank. The background pressure was i n  the  order of  Torr. 

The gun was located close t o  
Tank 

A sca le  drawing of the  electrode and in su la to r  arrangement i n  
the  new pulsed a rc  th rus to r  i s  shown i n  Figure 2 3 .  The copper e lectrodes 
are connected t o  a capaci tor  bank which operates as a pulse l i n e  with 
90 ms1 impedance and 650 psec pulse  duration. 

A magnetic bias f i e l d  i s  provided t o  make the  discharge 
symmetric. This f i e l d  a l so  induces azimuthal H a l l  currents.  The b i a s  
f i e l d  c o i l  i s  connected t o  an e l e c t r o l y t i c  capacitor bank which has a 
pulse  durat ion long compared w i t h  t h e  discharge t i m e  of the gun. The 
average bias f i e l d  s t rength  i n  the gun could be varied from zero t o  
5 !Gauss. 

An i g n i t o r  e lectrode i s  s i tua ted  i n  the  anode - cathode i n t e r -  
space, connected by a small 0.01 pF capaci tor  t o  t h e  cathode and charged 
t o  about 3 kV. 
i n  the in te re lec t rode  space. A fast-opening valve (eddy-current type),  
described i n  Section 6.1 i n j e c t s  the gas i n t o  t h e  discharge chamber. 
gas  i s  fed through six sonic o r i f i c e s  which control  and meter the  flow 
rate. These o r i f i c e s  are located close t o  the  anode. 

This i g n i t e s  the discharge as soon as c e u t r a l  gas appears 

The 

The low back pressure i n  the  discharge chamber has no e f f e c t  
on the mass flow rate. 
by recording t h e  pressure rise i n  the vacuum tank of known volume. 
mass flow rate ca l ib ra t ion  w a s  made by seal ing t h e  vacuum chamber and 
then determining t h e  rate of pressure rise with a McLeod gauge when a 
constant  pressure w a s  applied t o  t h e  plenum charriber of t he  valve. 
c a l i b r a t i o n  i s  shown i n  Figure 24. 
chosen l a rge  enough so t h a t  i t s  pressure stayed p r a c t i c a l l y  constant 
during t h e  time of gas inject ion.  It i s  important that the  gas flow 
a t t a i n s  s teady-state  conditions i n  a t i m e  shor t  compared t o  the  discharge 
time of  t h e  gun. The gas valve opened i n  50 psec, t he  flow became steady 
i n  100 psec. 
discharge l a s t e d  f o r  650 psec. 

The gas f low could, therefore,  be ca l ibra ted  
The 

This 
The volume of t h e  valve plenum w a s  

This was observed with a 6 ~ ~ 6  fast ionizat ion gauge. The 
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I n  a series of experiments, the  mass flow rate was varied 
between 30 mg/sec and 300 mg/sec, t he  b i a s  f i e l d  between 200 Gauss and 
5 kGauss and t h e  power level  between 10 kW and 1.5 Mw. 
of var ia t ion,  the general  behavior of the  gun i s  as follows: 
discharge could only be achieved i f  the gun impedance w a s  below U. 
th is  was f u l f i l l e d ,  t he  gun showed quasi-steady-state behavior; i.e., 
a l l  measurements had a f a i r l y  constant value over t h e  period of t he  d i s -  
charge. 
of t he  gun stayed between 200 and 400 vol ts .  A t  constant bias f i e l d  and 
constant mass flow rate, t h e  impedance always dropped with increasing 
a r c  power. The smallest impedance observed was 3 ndz. 

Over t h i s  range 

If 
A symmetric 

Within these limits of operation, t he  voltage a t  t h e  terminals 

The high instantaneous power level of 1.5 M w a t t  could be 
achieved without d i f f i c u l t i e s .  The thrus tor  behaved w e l l ,  and a l l  
the diagnostics gave reprod1icibI.e signals. The cathode erosion was 
r a the r  severe, however. 

The set  of measurements which i s  presented next was taken a t  a 
mass flow rate of 100 mg/sec, a gun voltage of 130 vol t s ,  and a power 
level of  about 200 kwatts. 
was about 400 Gauss. 
shown i n  Figure 25. 

The b i a s  f i e l d  i n  t h e  region of t he  discharge 
The f i e l d  pattern,  measured with a Gauss-meter, i s  

The value of current  and voltage a t  the  terminals of t h e  gun 
The current  s tays  constant f o r  about 650 psec. i s  shown i n  Figure 26. 

The vol tage drops from t h e  charging voltage of t h e  capaci tor  bank t o  t h e  
gun voltage of about 130 V within 100 psec, 
i s  a consequence of t h e  pulse l i n e  power supply and the  constant mass flow 
rate . 

The quasi-steady-state behavior 

Figure 27shows ion energy oscillograms taker, Ir, th2  exhaust with 
a re ta rd ing  e l e c t r i c  f i e l d  analyzeqconsis t ing of a gr id  m d  a co l l ec t a r  
plate. The lower t r a c e  i s  the  g r id  current which i s  t h e  same i n  a l l  the  
oscil lograms and shows the  shot-to-shot reproducibi l i ty .  The upper t r a c e  
represents  t he  ion current  passing the region of re ta rd ing  e l e c t r i c  f i e l d .  
The i o n  co l l ec to r  s igna ls  are about constant up t o  30 v o l t  bias p o t e n t i a l  
and drop down between 30 and 50 volts.  
ind ica tes  an ion  energy of approximately 40 eV and a corresponding ve loc i ty  
o f  a l i t t l e  more than 4 cm/psec. 
from about 40 t o  150 v o l t s  as the  power level w a s  increased from 100 t o  
1500 kW. 
t h e  t e r m i n a l  voltage on the  thrustor .  

Assuming s ingle  ionization, t h i s  

It w a s  observed t h a t  the  ion energy varied 

The ion  energy w a s  always less than the  energy corresponding t o  

I n  addition, ve loc i ty  measurements have been made with a newly 
developed t o o l  which a l s o  could be applied t o  d i r e c t  measurements i n  
steady-state plasma thrustors .  
a p a r t  of t h i s  NASA contract.  But since t h e  i n i t i a l  measurements with 
t h e  ve loc i ty  probe were performed on the  pulsed a r c  th rus to r  under t h e  
above conditions, they w i l l  be included here. 

The development of t h i s  t o o l  has not been 
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PLASMA - 
Above i s  a sketch of the  e s s e n t i a l  features of t he  probe; 

t h e  ana lys i s  of i t s  operation i s  given i n  Section 8.4. 
s is ts  of a fast e l e c t r i c  plasma shu t t e r  and an ion co l lec tor .  
operates  on the  basis of a t ime-of-fl ight measurement. 
of t h i s  probe i s  demonstrated i n  Figure 28. 
open-closed state of the  shut ter ;  the upper t r aces  show the  ion current  
a r r i v i n g  a t  the  co l lec tor .  I n  the  upper photograph the  shu t t e r  remains 
open. The upper t r a c e  shows t h e  quasi-steady-state ion pulse of t h e  gun. 
The second photograph shows the ef fec t iveness  of t h e  shut te r  i n  switching 
o f f  t h e  ion  current.  
s h u t t e r  i n  a faster time sweep. The a r r i v a l  rate of the  ions a t  the  
c o l l e c t o r  a l lows us t o  determine the  ve loc i ty  d i s t r i b u t i o n  of t h e  ions. 
A t y p i c a l  ve loc i ty  d i s t r i b u t i o n  f o r  the  exhaust ions of t he  pulsed a rc  
gun i s  shown i n  Figure 29. The measured d i s t r i b u t i o n  peaks near a velo- 
c i t y  of 3 cm/psec. 
indicated by the  energy measurements, assuming a helium exhaust. The 
discrepancy i s  probably caused by eroded material. 
s iderable ,  as w i l l  be discussed l a t e r .  

The probe con- 

The capabi l i ty  
The lower t r a c e s  show t h e  

The probe 

The las t  photograph shows the  opening event of t h e  

Most of t h e  ions have v e l o c i t i e s  somewhat less than 

The erosion w a s  con- 

I n  order  t o  derive the  temperature of t he  ions i n  the  exhaust, 
an improved ve loc i ty  probe w a s  employed. 
t h e  guri w a s  reduced t o  about 80 vol t s  I n  order t o  minirLze cathode erosion. 
For these  measurements, t h e  switch-off event of t h e  shu t t e r  w a s  used 
ins tead  of t he  switch-on event as  used i n  Figure 2 6  
i s  shown i n  Figure 3Q The upper beam shows the  gun current on a time 
sca l e  of 200 p,sec/cm. 
going with ion-current) on a time scale of 1 psec/cm. 
beginning of this  s igna l  i s  produced by t h e  closing of the shutter and i s  
used as a time-zero indicat ion.  

Also the  terminal voltage of 

The s igna l  obtained 

The lower beam shows the  co l l ec to r  s igna l  (negative 
The t r ans i en t  a t  the  

Again, t he  ve loc i ty  d i s t r ibu t ion  of t h e  ions was determined 
from the p r o f i l e  of t h e  co l l ec to r  current. 
shown i n  Figure 31 as a so l id  l i ne .  
were ca lcu la ted  f o r  a Maxwellian ion gas with an average ve loc i ty  taken 

This experimental curve i s  
For a comparison, t h e o r e t i c a l  curves 
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from the  ve loc i ty  measurements and with t h e  temperature taken as the  
adjustable  parameter. Two theo re t i ca l  curves are shown i n  Figure 31  
as dotted l i nes .  
ture. 
t o  be r a the r  low i n  the  range of  50OoK. 
considered as preliminary though, because the  complete absence of eroded 
cathode material s t i l l  has t o  be ver i f ied.  

The width of t h e  peak cha rac t e r i s t i ze s  the  tempera- 
The temperature of t he  helium ions i n  the  a r c  gun exhaust seems 

These measurements have t o  be 

A t h i r d  set of measurements w a s  taken with the  main objec t ives  
being t o  determine the  dominant axial electromagnetic forces  and t o  esti-  
mate t h e  H a l l  parameter %-re f o r  t h e  electrons.  There are two components 
t o  t h e  j x B force which provide a x i a l  accelerat ion,  jr x Be and j e  x B , 
and these  have been measured. The power l e v e l  of t he  gun w a s  again 2005W. 

Two sets of magnetic f i e l d  measurements are necessary. The 
unperturbed f i e l d  of the bias c o i l  without the  gun operating was measured 
with a H a l l  e f f e c t  probe. 
conventional loop c o i l  (B-probe). Figure 32 shows one pos i t ion  of  t h e  B- 
probe and a l so  a Rogowski probe which w a s  used t o  measure t h e  cur ren t  
dens i t i e s  d i rec t ly .  
and the  azimuthal current  density which were obtained by moving the 
probes downstream p a r a l l e l  t o  the  axis.  

The se l f - f i e ld  of the  gun w a s  measured with a 

Also shown are the azimuthal magnetic f i e l d  

The ac tua l  oscillograms of these measurements are shown i n  
Figure 33. Consider the  oscillograms a t  the  top. The lower beam shows 
t h e  H a l l  current  densi ty  f o r  t he  two p o l a r i t i e s  of t he  bias f i e l d .  
H a l l  current  reverses  iden t i ca l ly  with the  bias f i e l d .  
t h e  measured current  i s  indeed the H a l l  current.  
t h e  terminal  gun current  which proved t o  be independent of bias f i e l d  
p o l a r i t y  as expected. The lower oscillogram a t  the  l e f t  compares t h e  
azimuthal current  densi ty  with the r ad ia l  current  density a t  corresponding 
p laces  near t h e  insu la tor .  
times l a r g e r  than t h e  scale  f o r  t h e  lower. 
t e n  times l a r g e r  than jr. 
r e n t  dens i ty  was obtained by measuring the  axial gradient  of the azimuthal 
magnetic f i e ld .  
i s  shown i n  the  lower right-hana corner. 

The 
This shows t h a t  

The upper beam presents  

Note t h a t  t h e  sca le  f o r  the  upper beam i s  t e n  

A more accurate determination of t h e  r a d i a l  cur- 
Therefore, j e  i s  more than 

One oscillogram from t h e  measurement of t he  azimuthal f i e l d  

Total  forces  due t o  the  cross products of j and B were estimated. 
The i n t e g r a l  of j e B r  w a s  calculated over the volume of the discharge. 
Since the signal-to-noise r a t i o  on the  j r  da ta  i s  poor, t h e  t o t a l  force F 
due t o  j r  x Bg w a s  estimated by  the formula F = L'12/2, where L' i s  the  
inductance pe r  u n i t  length of t he  barrels and I i s  the  t o t a l  a r c  current.  
The t o t a l  acce le ra t ing  force produced by j ex  Br was found t o  be  about a 
f a c t o r  of two g rea t e r  than t h a t  produced by jr x Be with the  reported 
geometry and bias f i e ld .  These measurements are not su f f i c i en t ly  de ta i led  
t o  a l low a t h e o r e t i c a l  ana lys i s  of t he  acce lera t ion  mechanism, however, 
they i l lustrate  t h a t  t he  H a l l  current i s  important and t h a t  such measurements 
can successfully be made w i t h  t he  pulsed MPD arc.  
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The probe measurements between t h e  e lec t rodes  a l so  allow a 
good estimation 
Ohm's l a w  f o r  a 

4 

j = C T  

Considering t h e  
d i f fus ion  terms 
i s  given by 

of f o r  t h e  electrons.  Consider the generalized 
two-component plasma. 

3 4 4  1 - 4  
j x B + -  G + V x B - -  en e 

en e 

8 component only, the e l e c t r i c  f i e l d  and t h e  pressure- 
do not contribute because of  t h e  symmetry; therefore  j 0 

4 + 
where je(r, z )  i s  t h e  e lec t ron  current i n  t h e  r=z  plane and B ( r ,  z) i s  
the magnetic f i e l d  component i n  the r-z plane. We have measured B and 
the  t o t a l  current  density.  
measured exp l i c i t l y .  
magnetic f i e l d  l ines ,  the average value of k & ~ ~  ins ide  the  gun turns  out  
t o  be near 5. This then i s  a lower l i m i t  f o r  W I- . 

I n  a four th  set of experiments, a survey of t he  t h r u s t  e f f ic iency  

The electron current  densi ty  has not been 
If w e  assume tha t  no ion current  flows across  t h e  

e e  

has been made under various conditions of power, mass flow rate, and b i a s  
f i e l d  . 

A b a l l i s t i c  pendulum i n  the exhaust was used t o  determine t h e  
impulse produced by t h e  thrus tor .  
can be obtained w i t h  pendulums primarily as a result of t he  surface 
ablat ion;  t h i s  e f f e c t  i s  pa r t i cu la r ly  severe i n  measurements with short-  
pulse  thrus tors .  However, i n  pulsed a rc  t h r u s t o r  measurements, the  rate 
of  energy deposit ion upon t h e  surface i s  two orders  of magnitude less. 
The main experimental observations here are not s ens i t i ve  t o  such errors. 

It i s  w e l l  known t h a t  erroneous results 

i n  w h a t  foiiows, sources of mass o ther  than t h e  neut ra l  gas input  
are ignored. The thrust e f f ic iency  was measured i n  two ways. 
determination, based on t h e  pendulum, t h e  ;nput power, and neut ra l  gas flow 
measurements, gave an eff ic iency,  ll = T2/2mP, which increased with de- 
creasing neu t r a l  gas flow. Since the t h r u s t  w a s  i n sens i t i ve  t o  the  neu t r a l  
gas flow, values of 7 up t o  lOC% could be obtained by decreasing &, t he  
n e u t r a l  gas flow. The second determination, based on t h e  pendulum, the 
power and t h e  gridded analyzer measurements gave an eff ic iency,  7' = T ve/2P, 
which increased s l i g h t l y  with power but never exceeded 2%. 
T '  was a l s o  insens i t ive  t o  the  neutral  gas flow rate. 

The first 

The ef f ic iency  

The two t h r u s t  e f f ic iency  measurements are i n  ser ious disagree- 
ment. This indica tes  that t h e  mass flow i n  t h e  exhaust d i f f e r s  from t h a t  
ca lcu la ted  from the rate of neu t r a l  gas  input. This e f f e c t  i s  w e l l  known 
i n  the MPD arc.  
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Some information on mass sources was obtained. Some measure- 
ments of weight loss i n  t h e  cathode and the  back in su la to r  were made. 
It was found that the  eroded mass was about proport ional  t o  the  number 
of Coulombs of charge which had passed through t h e  gun. The constant 
was of t h e  order of 2 x 10- 4 2  coulomb. 

A t  low in jec ted  mass flow r a t e s  the eroded mass pe r  shot ex- 
ceeded t h e  in jec ted  mass. A s  expected i n  t h i s  case, t h e  exhaust ve loc i ty  
w a s  smaller than the  apparent spec i f ic  impulse. 
(30 mgm/sec) and Foderate gun current  ( 2  kA) t h e  cathode contributed only 
15% t o  t h e  t o t a l  m. 

A t  high mass flow rates 

5 -3 Summary and Conclusions 

The summary of t h e  measurements may be mde as follows: 

1. The changes made i n  t h e  electrode s t ruc tu re  and b i a s  f i e l d  
c o i l  arrangement have not a l t e r ed  t h e  behavior of the th rus to r  s ign i f icant ly .  

2. Within a wide experimental range the  discharge i s  symmetric, 
s table ,  and reproducible from shot-to-shot. 

3. The random energy ( i o n  temperature) i n  t h e  exhaust i s  low 
compared t o  t h e  d i rec ted  energy. 

4. The H a l l  current  density has been found t o  be an order of 
The j e  x Br force i s  magnitude l a rge r  than the  r a d i a l  current  density. 

about a f ac to r  of  two l a r g e r  t h a n  the j r  x Be force. 

5. The true t h r u s t  eff ic iency of t h i s  t h rus to r  with helium 

The obvious difference between t h e  pulsed a rc  th rus to r  and 
propel lan t  a t  200 kid and a spec i f ic  impulse of 2000 sec i s  probably less 
than 2%. 
the continuous MPD a rc  i s  the  cathode temperature. 

6 .  A t  moderate gun currents of about 2 kA and a t  high values 
of  instantaneous mass flow rate, t h e  cathode erosion cons t i tu tes  a minor 
cont r ibu t ion  t o  t h e  propel lant  flow. 

7. The th rus to r  has been operated success-y at  power levels 
up t o  1.5 MW. 

These measurements demonstrate that the pulsed a rc  th rus to r  can 
b e  used t o  study MPD a r c  phenomena, and a t  very high power levels ,  i f  
ne ce s sary . 

Unique measurements have been performed which show the  presence 
of a l a r g e  H a l l  current  i n  t h e  discharge and a r e l a t i v e l y  low ion tempera- 
ture  i n  t h e  exhaust. 
arrangement. 
as a production mechanism for metal l ic  vapor propellant,  i f  l i qu id  metal i s  fed 
t o  the cathode surface.  This i s  of p a r t i c u l a r  i n t e r e s t  i n  connection with 
the simple t r igger ing  mechanism described i n  Section 6.2.3. 

Cathode erosion remains a problem i n  t h e  present  
Y e t ,  we see po ten t i a l  p o s s i b i l i t i e s  i n  using the  cathode erosion 
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6.0 PROPELLANT INJECTORS 

Un t i l  t h i s  year, propel lant  i n j ec to r s  i n  our laboratory have 
been b u i l t  only t o  e f f e c t  a pa r t i cu la r  research purpose, and propel lan ts  
such as nitrogen and xenon have been chosen f o r  t h e i r  handling conven- 
ience. During t h i s  contract ,  p rac t i ca l  engineering problems such as energy 
consumption, r e l i a b i l i t y  and s implici ty  of the  in j ec to r s  have been con- 
sidered. A number of mechanical and non-mechanical i n j ec to r s  have been 
bu i l t ,  and preliminary experiments conducted on each. These in j ec to r s  
include types which are su i tab le  f o r  pulsed in j ec t ion  of metal l ic  propel lants .  
For t h e  most par t ,  t h e  operating mode i s  f o r  r a d i a l  propel lant  in jec t ion .  

I 
1 

I 
I 

6.1 Fast  Gas Valves 

The operation of  very fas t  gas  valves i s  almost invariably 
electromagnetic. The reasons a re  twofold: f i rs t ,  the driving force 
can be applied i n  extremely short  times and with nearly per fec t  cont ro l  
as t o  t h e  time of application, and second, the "f luid"  which a c t s  upon 
the  moving material element i n  the  valve has no l imi t ing  "sound speed'' 
i t se l f ,  short  of t he  ve loc i ty  of l i gh t .  

I n  appl icat ions where speed of opening i s  of g rea t e s t  i m -  
portance, and where s i z e  o r  mass of the associated c i r c u i t r y  and energy 
supply i s  not  an important constraint ,  it i s  usual  t o  employ t h i n  meta l l ic  
diaphragms driven by very rapidly applied magnetic f i e l d s .  
i n t e r v a l  between switching on the  f i e l d  against  one s ide of the  diaphragm 
and t h e  d i f fus ion  of t he  f i e l d  through it, there  i s  a strong flow of eddy 
cur ren ts  i n  the  metal; these in t e rac t  with the  f i e l d  and r e s u l t  i n  a strong 
acce lera t ion  of  the conductor away from the  f i e l d .  
t i o n  can be achieved t h i s  way. 

During the  time 

Extremely rapid accelera- 

If ,  however, the  quantity of energy necessary t o  operate the  
valve i s  i t s e l f  an important consideration, the  eddy-current valve appears 
much less favorable. The reason i s  simply t'nat it i s  very d i f f i c u l t  i n  
such a device t o  deposi t  t h e  majority of t he  magnetic energy where it i s  
needed, i.e., i n  the  immediate v ic in i ty  of the  moving diaphragm surface. 
One may consider t h e  use of " f lux  concentrators" t o  produce a more e f f i c i e n t  
f i e l d  d is t r ibu t ion;  however, these do not seem t o  have been employed very 
e f f e c t i v e l y  t o  date, i f ,  indeed, they can be a t  a l l .  

We have invest igated three  concepts f o r  fast gas valves; one i s  
based on t h e  pr inc ip le  out l ined above of an eddy current  driven disk, i n  
another a solenoid i s  u t i l i z e d  t o  compress a spring which i s  subsequently 
re leased  t o  dr ive a l ightweight hammer i n t o  impact with a valving element, 
and the t h i r d  uses a ferromagnetic core. I n  a l l  cases the  energy required 
t o  open t h e  valve i s  small compared with the  energy delivered t o  the  
plasma. The experiments described below indica te  t h a t  a gas valve need 
not  l i m i t  the  performance of pulsed plasma thrus tors .  
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Two methods were used t o  measure the  opening of t h e  valves, 
first by photoe lec t r ic  sensors, and secondly, by measuring, by means of 
a fas t - ion iza t ion  gauge, t he  gas emitted i n t o  t h e  vacuum chamber. 

Disk Valve Driven by Eddy Currents 

The valve i s  shown schematically as follows: 

GAS OUTLET 

rSEALING O - R I N G  

PLUG 

RUBBE I- 
J L;,;BBER STOPPER 

:R STOPPER 

The d i s k  i s  allowed t o  acce lera te  t o  i ts  terminal  ve loc i ty  before i m -  
pac t ing  t h e  sea l ing  plug. 
i n  which t h e  d i sk  i t se l f  opens a s e a l  during i t s  i n i t i a l  movement. 
arrangement above allows a longer time f o r  t h e  magnetic forces  t o  a c t  
and, thus, a r e l a t i v e l y  higher impedance f o r  t he  force  c o i l  which can 
be matched t o  t h e  energy s torage capacitor.  

This valve i s  i n  cont ras t  t o  similar valves 
The 

This valve opens i n  l e s s  than 100 psec, t akes  only 10 Joules, 
and has survived 50,000 operations without damage. 
ohmic heat ing i n  the  c o i l  and i n  the  d isc .  

The bas ic  l o s s e s  are 

Solenoid-Cocked, Spring-Actuated Valve 

This valve employs a solenoid t o  compress a spring, then u t i l i z e s  
t h e  spr ing  energy for actuat ion.  Since t h e  solenoid plunger i s  used only 
f o r  compressing the  spring, t h e  weight and ve loc i ty  of  t he  plunger do not  
l i m i t  t h e  opening t i m e  of t h e  valve. 
i n  Figure 34, cons i s t s  of a solenoid, (Guardian g-57458), a l ightweight 
hammer, a permanent magnet, a seal ing b a l l  and a combination plenum chamber 
and ba l l  seal. Three spr ings a r e  required, t he  main energy s torage spring, 

The mechanism, shown schematically 



I 

1 
I 1 

I i ! 
1-1 

ENERGY STORAGE SPRING 

MAGNETIC FIELD 

PER MAN ENT MAGNET 

KEN 

i 

b 1 
W 

1 

I t  I - 
C TJ 

UM 

FIG. 34 SOLENOID -COCKED, SPRING-ACTUATED VALVE 
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a b a l l  s e a l  spring, and a l i g h t  spring f o r  re turning the  solenoid plunger 
after each stroke. Referring t o  Figure 34(a), shows t h e  valve i n  the  
normal standby condition p r i o r  t o  appl icat ion of power. The hammer i s  
held i n  pos i t i on  by the  permanent magnet and the  gas i s  sealed by t h e  
spring-loaded b a l l .  
plunger r e tu rn  spring a r e  unstressed and i n  t h e i r  f r ee  lengths.  Actuation 
i s  i n i t i a t e d  by discharging a capaci tor  thrsugh the  solenoid. The solenoid 
armature i s  driven forward, compressing the  energy-storage spring. During 
t h e  compression stroke, Figure 34 (b), t he  haxxer remains locked i n  ;xi- 
t i o n  by t h e  permanent magnet ur,til impacted by the  solenoid plunger. The 
impact unseats the  hammer and t r ans fe r s  momentum from t he  plunger t o  the  
hammer. 
energy-storage spring, reaching maximum ve loc i ty  a t  impact with the  b a l l .  
During t h e  f i n a l  t r a v e l  t h e  hammer enters  and seals the  upstream end of 
the  plenum chaniber. The trapped gas i s  released upon impact of t h e  harmer 
and b a l l  as shown i n  Figure 34(c) .  The opening time of the  valve i s  inde- 
pendent of valve closing time. The s e a l  i s  closed by ac t ion  of t h e  valve 
seal spring before the  energy-storage spring withdraws the  hammer from i t s  
plenum seat.  
pos i t i ons  shown i n  Figure 3Ya). 

Both t h e  energy-storage spring and the  solenoid 

The hammer i s  then accelerated by the  force exerted by the  

The solenoid plunger and hammer then r e tu rn  t o  their  c r i g i n a l  

The rise t i m e  of t he  gas pulse re leased by the  Val\-e and the  
e f f e c t s  of va r i a t ion  i n  spring constants and s t roke were measur4.  Best 
performance obtained t o  date  i s  a rise t i m e  of I25 psec obtained with an 
energy input of 3 Joules. 

Po ten t i a l  re l iabi l i ty  was demonstrated by the  successful com- 
p l e t i o n  of 252,000 valve operations with no apparent degradation of the  
mechanism, 
contaminants. 
with alcohol. 
A f t e r  252,000 operations the  gas  leakage was measured as approximately 1 lb 
per  year if the  seal i s  made against  0.1 atmosphere of nitrogen. 
tamination r a t e  should be appreciably less a f t e r  s e l ec t ion  of better 
mterials . 

The valve s e a l  did, however, gradual ly  de t e r io ra t e  due t o  
A f t e r  l 5 0 , O O O  operations the  seal w a s  res tored by washing 
Thereafter,  t he  contamination r a t e  w a s  observed t o  be less. 

The con- 

Ferromagnetic Core Valve 

The operating pr inc ip les  of t he  ferromagnetic core valve are 
The first experimental mechanism i s  sketched below : given  i n  Section 9.0. 



It i s  made from a to ro ida l  core (Arnold T5651 aV), with a 
60' sec tor  serving as t h e  movable armature. The armature i s  held i n  
place by a Be-Cu leaf spring which also provides t h e  res tor ing  force 
toward the  n u l l  posit ion.  A 5 mm diameter hemisphere i s  at tached t o  
the armature: 
Forty tu rns  were wound on the  core. 
l y t i c  capaci tor  charged t o  voltages between 20 v and 150 v, and switched 
with a s i l i c o n  control led r e c t i f i e r .  
hundred microseconds f o r  f r ac t iona l  millimeter gaps have been obtained, 
and energies  of about 40 mi l l i jou les  are a l l  that i s  required - typical ly ,  
25 v o l t s  on the  125 pfd capacitor. 
t yp ica l ly  .5 t o  1.0 millisecond. 

t h e  ba l l ,  seated against  an O - r i n g ,  forms the  valve i tself .  
It was fed from a 125 pfd e lec t ro-  

Opening times of one t o  three  

The t o t a l  gas  pulse duration w a s  

A s  shown i n  Section 9.0, t h i s  design fea tures  economical use 
From experiments with t h e  first of t h e  magnetic energy i n  the system. 

prototype, it was determined t h a t  the theo re t i ca l  estimates i n  Section 9.0 
are f a i r l y  accurate  and can be  used f o r  further design improvement. 
i s  an t ic ipa ted  t h a t  with reasonably ca re fu l  packaging, t he  e n t i r e  valve, 
together  with i t s  energy-storage capacitor and switching e lec t ronics  can 
probably be  put i n t o  a s ingle  cubic inch. 
ment a l so  conforms n ice ly  t o  avai lable  spacecraf t  voltages. 
c a l  operat ion i s  sirrrple: t h e  p a r t s  should have good lifetime. 

It 

The 25-volt supply require- 
The mechani- 

A new valve was designed f o r  faster operation and packaged t o  
sui t  the requirements of  propel lant  i n j ec t ion  i n  coaxial  t h rus to r  experi- 
ments. I n  Figure 14, it i s  shown i n  the  pos i t ion  fo r  r a d i a l  gas in- 
j e c t i o n  a t  the gun insulator .  
t h e  c los ing  of t h e  reservoir .  
j ou le .  
ca re fu l  adjustment of  t h e  par ts ,  a gas  pulse  duration of  less than 250 psec 
can be obtained. 
sho t s  at  110 shots/sec without seal deter iorat ion.  

I n  t h i s  design t h e  gas pulse i s  shut of f  by 
The new valve operates on less than 0.1 

Nominally the gas pulse has a durat ion of 250 t o  500 psec. With 

The valve has been t e s t e d  successfully t o  28 mi l l ion  

I 

6.2 Metal l ic  Vapor In j ec to r s  

6.2.1 Choice of Metal 

The use of  metals as propel lants  f o r  t he  pulsed plasma gun has 
several possible  advantages. 
s torage  during a c t u a l  space f l i g h t  missions. 
o f  some metals may lead  to an  improved performance of t h e  gun by minimizing 
f rozen  flow losses. I n  order t o  avoid t h e  losses  associated with secondary 
ion iza t ion ,  a l a rge  energy gap between t h e  f irst  and second ionizat ion 
level  i s  desirable .  The mtals with low molecular weight possess the  l a r g e r  
energy gap. 
because t h e  k i n e t i c  energy of t h e  exhaust f o r  a given spec i f ic  impulse sca les  
w i t h  t he  molecular weight, while the dominating lo s ses  from t h e  plasma sca le  
w i t h  t he  ion number density. 

The f i r s t  i s  t h e i r  r e l a t i v e l y  convenient 
The low ion iza t ion  p o t e n t i a l  

On t h e - o t h e r  hand, a high molecular weight i s  advantageous 
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A low vapor pressure and a low melting poin t  a r e  des i rab le  

By forming mixtures the  melting 
f o r  t he  propel lant  metal. Sodium, potassium,cesiwn,gallium, mercury, 
indium, and t i n  are l i k e l y  choices. 
point  can be reduced below room temperature 
face  tension can be changed. Since i n  a zero g environment the  surface 
tension i s  a dominating force it can be used f o r  pumping the  propel lan t  
from storage t o  the  thrus tor .  
p roper t ies  of t he  metals being considered as a proyel lant .  

and the  value of t he  sur- 

The following t a b l e  gives some relevant  

Ionizat ion Boiling Surface Tension 
Po ten t i a l  Melting Point Vapori- (dYnes/cm) 

Molecular I I1 Point (OC)  a t  za t ion  Near Melting 
Weight (ev) (ev) ( O C )  760 D ( cal/g) Point 

L i  
N a  
K 
G a  
I n  
Sn 
cs 
Hg 

6 .9 
23 .o 

114 . 8 
118 . 7 
134 
200.6 

39.1 
69.7 

5.4 75.3 186 
5.1 47.1 97.5 
4.3 31.7 62.3 
6.0 20.4 29.8 
5.8 18.8 156.4 
7.3 14.5 232 
3.9 23.4 28.5 

10.4 18.7 -38.9 

1336 4680 394 
880 1005 200 
760 496 86 

1983 1014 735 
2087 468 340 
2270 573 526 
670 146 40 
356 .9 69.7 465 

The choice of t he  l i q u i d  metal p ropel lan t  represents  a compromise 
between several d i f f e ren t  proper t ies  of the  m e t a l .  Theoret ical  considera- 
t i o n s  alone are not s u f f i c i e n t  because t h e  physical  mechanisms involved i n  
the  functioning of t h e  gun a r e  not yet coppletely understood. Thus a pro- 
gram of empir ical  va r i a t ion  i s  needed. 

6.2.2 In j ec t ion  Schemes 

Continuous l i q u i d  metal feed systems have already been developed 

The problems 
f o r  t h e  ion engines. 
p e l l a n t  from storage tanks t o  the  pulsed plasma acce lera tor .  
t o  be solved are those of economical vaporizat ion of t he  metal and proper 
deployment i n t o  the  discharge region. 

8Tnese feed systems 22:: be used to feed the  metal pro- 

The requirements of optimum i n i t i a l  p rope l lan t  d i s t r i b u t i o n  i n  the  
gun, p rec i se  timing and r e l i a b i l i t y  make the  development of such a pulsed in-  
j e c t o r  a non- t r iv ia l  task.  
consider first those schemes i n  which t h e  metal i s  vaporized and driven i n t o  
the  discharge by t h e  main current  pulse i t s e l f .  
d r iven  off t he  in su la to r  o r  of f  the  e lec t rode  surface. 

There are seve ra l  avenues of approach. W e  may 

The metal can e i t h e r  be 

The explosion of a t h i n  metal film off  t he  in su la to r  requi res  that 
This has ac tua l ly  been accomplished,l6 t h i s  f i lm  be replaced between shots. 

bu t  a t  the  p r i c e  of a complicated system of moving mechanical p a r t s  and a 
caref'ully adjusted vaporizing oven, Further,  t he re  i s  no apparent way t o  



embody such a scheme i n  a coaxial  geometry. 

Liquid metal p ropel lan t  might be fed t o  t h e  surface of t h e  
e lec t rodes  through cap i l l a ry  ducts i n  c lose array, or fed along narrow 
surface channels on the  electrodes.  The p r inc ipa l  object ion t o  t h i s  
scheme i s  t h a t  i n  order f o r  the  propellant t o  ge t  from the  electrode 
surface and properly d i s t r i b u t e  i t s e l f  i n  the  in t e re l ec t rode  resion, it 
must acquire  t ransverse ve loc i ty  o f  the same order as the  a x i a l  ve loc i ty  
t o  which one wants t o  acce lera te  it. Consider t he  example of propel lant  
evaporation from the  center  e lec t rode  (cathode) of a coaxial  gun. I n  
order  t h a t  the  mass be uniformly accelerated,  ( thus  minimizing lo s ses  
associated with a x i a l  ve loc i ty  spread) >he p s s  density,  a t  the  t i m e  of 
t h e  shot, should vary as r-2, as does I j x BI . 
requirement than uniform dis t r ibu t ion ,  bu t  it i s  s t i l l  impossible t o  
achieve with thermal evaporation speeds. 
example, would expand only about 1 mm away from the  surface i n  a micro- 
second. 

This i s  a l e s s  s t r ingen t  

Sodium vapor a t  2000%, f o r  

The production of vapor by the main current  pulse  f romloca l i zed  
l i q u i d  surfaces  on the  in su la to r  a l so  su f fe r s  from the  l ack  of proper 
i n i t i a l  p rope l lan t  d i s t r ibu t ion .  
su l a to r  might be used t o  overcome t h i s  ob jec t ion  bu t  t he  feed systems and 
the  ac tua t ion  cont ro l  tend t o  become complex. Furthermore, one could 
e q e c t  t he  main discharge energy t o  be d i s t r ibu ted  unevenly i n t o  the  pro- 
pe l lan t .  

Dist r ibuted l i q u i d  surfaces on the  in-  

We conclude, then,  t h a t  the  propel lan t  must be introduced i n t o  the  
gun as a vapor p r i o r  t o  the  main current flow. 
a l t e r n a t i v e s  are possible .  The f i r s t  is  t o  c rea t e  the  vapor i n  a steady- 
state way i n  an oven, f o r  example, and t o  i n j e c t  it with a pulsed cont ro l  
element. The engineering of a pulsed mechanical valve which i s  r e l i a b l e  
i n  an a l k a l i  metal vapor atmosphere appears formidable, although perhaps 
not impossible. Another p o s s i b i l i t y  i s  t o  cont ro l  t he  output of t he  oven 
with supersonic b i s t a b l e  f l u i d  elements. This scheme i s  simple, r e l i ab le ,  
and admits unionized vapor t o  the  bar re l s .  I n  p r inc ip l e  it i s  possible  t o  
bu i ld  a device that meets our requirements of pulsing frequency, pulse 
length and amplitude. The p r inc ipa l  object ion i s  the  propel lant  leakage 
i n  the  "off" s t a t e .  
t h e  devices a t t r a c t i v e  f o r  our purposes. 

It appears here t h a t  two 

An advance i n  the f l u i d  element technology would make 

The second a l t e r n a t i v e  f o r  vapor in j ec t ion  i s  t o  vaporize t h e  
metal  i n  b u r s t s  by e l e c t r i c a l  discharges, and t o  do it a t  the  in j ec t ion  
point .  
evaporation method discussed e a r l i e r ,  except t h a t  t he  vapor i s  created by 
an energy source separate  from the  main ba,nk, and a t  an earlier time than 
t h e  main discharge. 
w i r e  i n t o  t h e  inner  ba r re l .  
system which i s  needed t o  feed the w i r e .  

These evaporation schemes are much l i k e  t h e  electrode or  i n s u l a t o r  

One such p o s s i b i l i t y  i s  t o  incorporate an e q l o d i n g  
The obvious disadvantage i s  the  mechanical 

The most a t t r a c t i v e  methods f o r  vapor in j ec t ion  are the  schemes 
which use l i q u i d  metals and which combine the  technological p r inc ip l e s  of 
t h e  exploding wire and of the  arc cathode spot. Spec i f ic  embodiments of 
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t h i s  approach have been b u i l t  and tes ted .  

One system, shown i n  Figure35, cons is t s  of a tube containing 
t h e  l i q u i d  metal propellant,  and a second electrode, which i n  the  ac- 
ce l e ra to r  appl ica t ion  would be e i t h e r  an i n t e r i o r  surface of t h e  inner  
coaxial  bar re l ,  o r  a second l i q u i d  metal electrode, as i n  the  f igure.  
A small induction c o i l  i s  wound t i g h t l y  around the  tube near i t s  end. 
Normally, t he  propel lan t  meniscus a t  the  end of t h e  tube and the  second 
electrode surface are separated from each other; however, a current  pulse  
i n  the  induction c o i l  "pinches" t h e  l i qu id  column, and forces  it outward 
as a drople t  so that a spark, energized by capaci tor  C, occurs. 
spark e s t ab l i shes  a cathode spot on the l i q u i d  metal which evaporates a 
por t ion  of t he  droplet;  the  combination of vapor and electrodynamic 
forces  i s  then observed t o  dr ive  t h e  m e t a l  s l i g h t l y  back i n t o  the  tube, 
thus inh ib i t i ng  "bridging" by the  l i qu id  across  the  gap. 

This 

The i n i t i a l  d r ive  setup was qui te  i ne f f i c i en t ,  and required 
about 5 jou les  f o r  operation. 
optimization of t h i s  c i r c u i t ,  only a small f r a c t i o n  of a joule  should be 
required. 

However, with a qui te  straightforward 

The energy requirements of t he  spark are not well  known. 
However, i n i t i a l  estimates of  t he  pa r t i t i on ing  of t h i s  spark energy are 
encouraging. 

Consider first t h e  severa l  channels i n t o  which the  spark energy 
goes. They are: 

(a) 

(b )  

( e )  

k i n e t i c  energy of t h e  vaporized p a r t i c l e s  

r ad ia t ion  from the  vapor and cathode spot 

hea t  conductivity into the  cold metal of t he  spark 
e lec t rode  

(d )  heat  of vaporization and ion iza t ion  of e lectrode 
materials. 

The energy loss  associated with item (a), i.e., the  random energy 
component of the  vapor i s  e n t i r e l y  negligible,  s ince experience ind ica tes  
t h a t  lo4 OK i s  a conservative upper l i m i t  t o  t he  spark temperature, and so, 
a loss of no more than 1 eV per atom i s  involved. 

An upper limit t o  t h e  rad ia t ive  lo s ses  (b )  would be obtained i f  
we assume that the  cathode spot i s  a blackbody a t  10 4 %. Assigning it an 
area of 10'2 em2, we obtain ( f o r  unity emissivi ty)  a r ad ia t ive  power s l i g h t l y  
l e s s  than  one kilowatt ,  which for vaporizatios, time of under a millisecond 
means l e s s  than one joule  loss .  

Conduction lo s ses  ( c )  can be estimated f a i r l y  w e l l  by simply using 
t h e  thermal diff 'us ivi ty  of t he  base metal and an assumed lo4 OK temperature 
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i n  order t o  ca lcu la te  the  heat  content of t h e  metal a t  a given time 
a f t e r  appl ica t ion  of a temperature step. Even i f  we allow a conduction 
area of 1 c&, we f ind  that i n  10 msec, only 1 joule  of heat  energy has 
entered t h e  electrodes.  

We conclude from these  admittedly rough est imates  t h a t  t he  
spark energy, i f  delivered i n  less than a millisecond, can be expected 
t o  go i n t o  channel (d )  (vaporizat ion)  with fair eff ic iency,  provided 
t h a t  more than a joule  or EO o f  energy i s  avai lable .  

One possible  d i f f i c u l t y  with t h i s  scheme i s  t h e  formation of 
s m a l l  drople ts  i n  addi t ion  t o  the  vaporization. 
t ion,  one would reduce the  violence of the  spark by inves t iga t ing  the  
minimum power l e v e l  t h a t  need be used for successful  operation. 
could a l s o  use another design which is l e s s  prone t o  drople t  formation. 

To prevent such forma- 

One 

Such a scheme which a l s o  probably allows f a s t e r  operation i s  

The non-wetting l i q u i d  metal i s  
shown i n  Figure 36. The vapor generating discharge i s  i n i t i a t e d  by a 
small capac i t ive ly  coupled discharge. 
contained i’l an insu la t ing  tube with a high d i e l e c t r i c  constant. An 
insu la t ing  g r id  prevents the  metal from flowing out of t h e  tube. When a 
f a s t - r i s i n g  voltage pulse  i s  applied t o  the  i n i t i a t o r  e lectrode,  e s s e n t i a l l y  
a l l  of the  voltage w i l l  appear across the  small f r e e  space between the  
l i q u i d  metal meniscus and the  in su la to r  w a l l .  
and t r i g g e r  the second discharge i n  the axial d i rec t ion .  ( y r a m i c  in- 
s u l a t o r s  with r e l a t i v e  d i e l e c t r i c  constants of more than 10 are avai lable .  
These are titanates, used f o r  ceramic capacitors.)  
t h i s  scheme has shown i t s  f e a s i b i l i t y o  The technica l  appl ica t ion  i s  a 
question of choosing the  r i g h t  materials s ince there  e x i s t s  t he  danger of 
high vol tage breakdown. Similar  g lass  coated and capac i t ive ly  coupled 
e lec t rodes  have been used f o r  a long time f o r  t r i gge r ing  commercial mercury 
r ec t i f i e r s .17  
energy goes i n t o  vaporization and ionization. 
temperature regime most of t h i s  energy can be t ransported i n t o  the  gun 
b a r r e l s  i f  a su i t ab le  geometry i s  chosen. 

This w i l l  lead t o  breakdown 

I n  t h e  laboratory 

This scheme should be very e f f i c i e n t  because most of t he  
I n  the  present  densi ty  and 

Another way of emporat ing the  propel lant  i s  given by a d i r e c t  
app l i ca t ion  of t he  ign i t ron  starter pr inciple .  Here a t h i n  rod of an 
e l e c t r i c a l l y  conducting and non-wetting mater ia l  i s  dipped i n t o  t h e  l i q u i d  
metal, and a current  pulse i s  applied. The r e su l t i ng  small discharge 
e s t a b l i s h e s  an a r c  spot whick? evaporates the  metal. 
have conducted a s e r i e s  of experiments which shall be described l a t e r .  

A l o n g  t h i s  l i n e  we 

The advantages of the above schemes a r e  obvious: 

1. No erosion o r  abla t ion  of surfaces from which the  propel lant  
i s  fed. 

2. High r e p e t i t i o n  rates, high power operat ion o f  the  thrus tor .  

3. P o s s i b i l i t y  of control l ing t h e  amount of vaporized material 



by changing t h e  e l e c t r i c a l  parameters 

6.2.3 

i n j e c t o r s  
s e c t  ion . 

4. Low-energy consumption. 

of t he  vaporization c i r c u i t .  

5. Simplici ty  and po ten t i a l  r e l i a b i l i t y .  

Experiments 

Exploratory work has been done on three  types of meta l l ic  vapor 
based on the  p r inc ip l e s  which were chosen i n  t h e  preceeding 
F i r s t ,  l i th ium vapor was injected r a d i a l l y  i n t o  the coaxial  gun, - -  

as a result of a w i r e  explosion on axis, and t h e  gun performance and 
discharge c h a r a c t e r i s t i c s  were determined. Secondly, a mercury propel lan t  
i n j e c t o r  was assembled t o  be su i tab le  f o r  gun experiments with a x i a l  pro- 
p e l l a n t  in jec t ion .  The mercury propel lant  d i s t r i b u t i o n  emitt ing from the  
i n j e c t o r  was measured. Third, vacuum sparks between so l id  e lectrodes were 
invest igated as a source of propellant.  

Diagnostics 

Straightforward measurements of t he  propel lant  d i s t r i b u t i o n  a r e  
possible,  using the  fas t -ac t ing  ion iza t ion  technique? f o r  t he  experiments 
i n  which non-condensable, unionized gases are used. For the  complete 
descr ip t ion  of t he  d i s t r i b u t i o n  of the p a r t i a l l y  ionized metal l ic  vapor, 
no method i s  r ead i ly  avai lable .  F r our exploratory experiments with 
meta l l ic  vapors, simple pendulums, Faraday cups,9 and p l a t e s  upon which 
t h e  propel lan t  i s  col lected,  were used t o  measure t h e  beam impulse, ion 
flux and veloci ty ,  beam spread, and mass e jec ted  pe r  shot. The neu t r a l  
atom dens i ty  i s  not measured exp l i c i t l y ,  and the  pendulum and beam 
c o l l e c t o r  p l a t e s  are known t o  have inaccuracies of perhaps a f a c t o r  2 
due t o  surface e f fec ts .  
ments on mercury because of t h e  high vapor pressure. 
achieve a gross  descr ip t ion  of t he  propel lant  d i s t r ibu t ion .  

8 

The problems a r e  f u r t h e r  complicated i n  measure- 
Thus one can only 

Exploding L i t h i m i  Wire 

A s  a s t a r t i n g  point  i n  the inves t iga t ion  of metal propel lan ts  
a laboratory system was fabr ica ted  t o  extrude l i th ium wire i n t o  the  e lec t rode  
s t r u c t u r e  of a coaxial  t h rus to r  and t o  vaporize the  l i thium by the  exploded 
w i r e  technique. 
motor driven pis ton,  an extrusion cylinder and an o r i f i c e .  
duced i n t o  the  extrusion cylinder i n  the  form of a 3.2 mm rod and continuously 
extruded i n  the  form of a 0.064 mm wire. 
molybdenum, serves as one electrode for exploding the  wire. 
supported by an in su la to r  rod within the  inner  b a r r e l  of the  thrus tor .  
inner  b a r r e l  serves as t h e  o ther  e lectrode f o r  exploding the  wire. 
c a l  motion of t h e  w i r e  t i p  across  a 0.125 mm gap t r i g g e r s  the  explosion. 
The explosioh i s  fed by a capacitor separate  from the  main capac i tor  of t h e  
t h r u s t o r .  
discharges t h e  th rus to r  capacitor.  

The device, shown i n  Figures 37 and 38, cons is t s  of a 
Lithium i s  in t ro -  

The extruding nozzle, made of 
The nozzle i s  

The 
Mechani- 

Lithium vapor enters  the i n t e r b a r r e l  region of t he  th rus to r  and 
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For preliminary tests, the feed system was incorporated i n t o  
a coaxial b a r r e l  assembly with ba r re l s  o f  15 cm length and diameters Of 
7.8 and 3.9 cm. 
7 cm from the  insulator .  
charged t o  5 kV w a s  used as the thrus tor  capaci tor  and a 20 fl capaci tor  
charged t o  2.5 kV was used f o r  the  storage o f  t h e  explosion energy. The 
i n i t i a l  results are: 
produced, (2) t h e  th rus to r  discharges i n t o  l i th ium vapor i n  a s table ,  axi- 
symmetric manner, (3) the exhaust consis ts  of  Li' ions w i t h  k ine t i c  
energies of about 100 eV, (4)  some l i thium i s  found on the  electrodes,  ( 5 )  
t h e  amount of energy used i n  the  propel lant  feed system i s  about one-fourth 
t h e  amount used i n  t h e  accelerator,  (6) the  gun fires e a r l y  i n  t h e  w i r e  
explosion process, (7) the  period o f  t he  current  which vaporizes t h e  
lithium i s  four  times the th rus to r  pulse-line period. 

The l i th ium w i r e  explosion took place on axis, about 
The Mark IX-pulse l i n e  (22 p, 17 IIQ, -75 psec) 

(1) successful repetitive wire explosions can be 

The behavior of t he  thrustor discharge seems encouraging, bu t  
obviously t h e  energy and mass u t i l i z a t i o n s  have t o  be improved. 

Mercury In jec tor  

t 

I 

The device constructed spec i f i ca l ly  f o r  the  in j ec t ion  of 
mercury i s  shown i n  Figure 39. 

A puddle of  propel lant  metal forms the  cathode ins ide  a g l a s s  
enclosure. 
Ign i t i on  of t h e  vacuum spark i s  achieved by a separate t r i g g e r  e lectrode 
which i s  coupled t o  t h e  anode by a 1 @' capacitor. The energy s tored i n  
t h e  108 pF capaci tor  then i s  discharged i n  a t i m e  of about 40 psec 
between cathode and anode. The generated plasma protrudes through the  
hole  i n  the anode and expands i n  t h e  form of a fast-moving j e t  i n t o  t h e  
vacuum. It w a s  found that f o r  low enough background pressure ( p  < 10 mm Hg) , 
a reliable ign i t ion  could be obtained f o r  capaci tor  charging voltages ex- 
ceeding 200 V, where the cathode consisted of e i t h e r  mercury, a l i qu id  
mixture of gallium, indium, and t i n  o r  a so l id  mixture of t i n  and indium. 
The i g n i t o r  e lec t rodes  eonsistec! e i t h e r  ef carbon which showed some erosion 
o r  boron carbide which showed negl igible  erosion after a few thousand 
discharges. 

The anode i s  ringshaped surrounding the exit of  t he  enclosure. 

The mass e jec ted  per  discharge w a s  determined by weight measure- 
ments of t h e  i n j e c t o r  and also of the deposi ts  col lected on a plate a t  
l i q u i d  nitrogen temperature. 
evaporation from the  free mercury surface had only a small e f f e c t  on t h e  
weight measurements. The measurements yielded a value of 3.1 10-4 g 
e j e c t e d  per discharge f o r  a charging voltage of 400 v o l t s  on t h e  108 p,F 
capaci tor .  
g per Coulomb. 

It w a s  carefu l ly  secured that steady 

This corresponds t o  a specif ic  evaporation rate of  8.1 

The spreading of the  ejected mercury jet, shown i n  Figure 40, 
w a s  determined from t h e  diameter of  the c i r c u l a r  condensation pa t t e rn  on 
t h e  cryogenical ly  cooled p l a t e  mounted a t  varied dis tance i n  f ron t  of t h e  
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anode hole. The r a d i a l  d i s t r ibu t ion  seemed t o  be uniform w i t h  a well 
defined edge of t h e  j e t ,  The spread was a l so  measured 35 cm from the  
source by t ravers ing t h e  beam with a Faraday cup. 
t h e  value of t he  ion current  densi ty  has dropped t o  only about 1/3 of 
t he  value of t he  center l ine.  

A t  40° o f f  t he  a x i s  

Knowing t h e  d i rec ted  veloci ty  of  t h e  ions and t h e  ion current 
density, t he  number densi ty  of the  ions can be determined. Single 
ion iza t ion  i s  assumed f o r  t h i s  purpose. 
j e t  about 1 m downstream from the  source turns  out  t o  be i n  t h e  range 
from 1 1O1O t o  4 1O1O cm-3. 
i on  f l u x  densi ty  over t h e  cross  section of  t h e  exhaust and over t he  durat ion 
of t h e  ion pulse  y ie lds  the  t o t a l  mass of  the  ions t h a t  are emitted per 
pulse.  

The ion dens i ty  i n  t h e  plasma 

Integrat ing i n  a rough way the measured 

This value i s  about 1% of the  t o t a l  emitted mass, 

The t o t a l  momentum i n  the  plasma j e t  as measured by two pendula 
The s l i g h t l y  d i f f e r -  made from aluminum and mylar i s  shown i n  Figure 41. 

e n t  behavior of t he  two pendulum mater ia ls  po in ts  t o  an influence of p a r t i c l e  
evaporation of f  the  pendulum. 
co r rec t  within a f ac to r  of two. 

These momentum measurements are probably 

Some t y p i c a l  results of the  measurements with negatively biased 
ion  co l l ec t ing  probes9 are shown i n  Figure 42. 
oscil logram where 3 t r aces  of t h e  i o n  current  densi ty  and of t h e  discharge 
cur ren t  are superimposed. The ciirrent and t h e  a r r i v a l  t i m e  of  t h e  ions 
are very repeatable while t h e  amplitude of  t he  ion f l u x  densi ty  shows 
some j i t ter .  From oscillogram (b)  we see, using another e jector ,  that 
t h e  arrival time of t h e  ions does not markedly depend on t h e  magnitude 
of  the discharge current.  The amplitude of t h e  ion  current  densi ty  i n  
t h e  e jec ted  plasma je t  grows about l i nea r ly  with t h e  magnitude of t h e  d i s -  
charge current.  Oscillogram ( c )  shows three  values of arrival t i m e  f o r  
var ied dis tance between the  plasma source and t h e  ion co l lec t ing  probe. 
Oscillograms l i k e  t h i s  one were used f o r  a determination of t h e  ion ve loc i ty  
according t o  a t i m e  of f l i g h t  consideration. T e ion ve loc i ty  determined 

i s  influenced by t h e  type of  cathode material. 
i n  t h e  range from 1.2 lo6 cm/sec to  4.2 lo6 cm/sec have been measured 
f o r  discharge vessels  of  d i f f e r e n t  dimensions. 

P a r t  (a) shows a typical 

from Figure 42( c )  has a value of about 2.5 10 8 cm/sec. The ion  ve loc i ty  
For mercury, ion ve loc i t i e s  

For t h e  mercury in jec tor ,  from the  momentum and mass measure- 
ments, one ca lcu la tes  an average exhaust ve loc i ty  2 t o  3 orders  of magnitude 
below the measured ion veloci ty .  This seems unl ikely and could be explained 
i f ,  immediately following the  discharge, t he  "impulsive" evaporation rate 
from the mercury surface is  abnormally high. 
be revealed by the  pendulum, nor by the  "steady" evaporation control  experi- 
ments because of  t he  time sca les  involved. Another explanation would 
involve the emission of  small, slow moving droplets .  
f o r  t h i s  w a s  v i s ib le ,  d rople t s  of micron s i z e  are known t o  e x i s t  i n  mercury 
puddle r e c t i f i e r s .  

Such a process would ne i ther  

Although no evidence 
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cross- 
about '3 1 

If, as suggested by the ion f l u x  measuremen s over the  exhaust 

cm/sec, then the measurements with t h e  mercury in j ec to r  become 
tion, t h e  pendulum i s  sensi t ive t o  about l o d  g of mass t r a v e l l i n g  

in t e rna l ly  consistent.  The measurements are then a l so  consis tent  with 
t h e  experiments i n  the  next sect ion which are less subject  t o  t h e  phenomena 
discussed above . 

Vacuum Spark In j ec to r  with Sol id  Electrodes 

A coaxial  discharge geometry, shown i n  Figure 43,also w a s  used 
f o r  t e s t i n g  various metals i n  so l id  form as t h e  eroding cathode material. 
I n i t i a l l y  the  discharge was t r iggered by a small t r i g g e r  e lectrode i n  the 
anode which w a s  pulsed with 6 kV. S tar t ing  with clean surfaces, it was 
f v w d  that after a couple of discharges, t he  t r i g g e r  pulse no longer w a s  
needed. Simply closing the switch which connects t h e  discharge element 
t o  t h e  pulse capaci tor  f ires the  discharge. 
i n  Table V,  t h i s  s e l f - s t a r t i ng  of the pulsed discharge w a s  found t o  occur. 
It was obvious t h a t  t h i s  s e l f - s t a r t i ng  was easier t o  obtain with metals of 
a low melting point.  It seems t h a t  t h i s  process of i gn i t i ng  t h e  discharge 
po ten t i a l ly  has a high r e l i a b i l i t y .  
pe l lan t ,  t h e  device showed no f a i l u r e  i n  a shor t  endurance test of 12,000 
se l f - t r iggered  discharges. 
discharges. 
f o r  high-melting poin t  materials i f  the mechanical tolerance between 
cathode, g l a s s  i n su la to r  and anode was not kept t i g h t  enough. 

For a l l  the  materials l i s t e d  

For example, with lead  as t h e  pro- 

All materials were t e s t ed  f o r  more than 103 
Fai lures  t o  i g n i t e  the discharge were occasionally encountered 

It appears that the  discharge is  ign i ted  by the  explosion of a 
t h i n  metal f i l m  which i s  deposited on the g l a s s  i n su la to r  surface by the 4 
preceeding discharges. 
When the capaci tor  vol tage i s  set so low t h a t  a full discharge does not  
occur, one can observe the  formation of some small b r igh t  spots a t  the  
cathode g l a s s  interface.  
discharge takes  place. l aen  used i n  connection with a low vapor pressure, 
l i q u i d  metal cathode, t h i s  scheme of ign i t ing  a discharge can simplify the  
operat ion of a pulsed m e t a l  feed system. 

The resis tance of th is  f i l m  i s  i n  the  range of 10 n. 

These obviously develop i n t o  a r c  spots  when t h e  

I n  a series of measurements with various cathode materials the 
mass and momentum t ransfer red  by the  pulsed discharge were measured. 
momentum was measured by a pendulum while t he  mass w a s  determined by 
weighing the accumulated deposi ts  formed by about 2,000 discharges on a 
g l a s s  plate. 
i n  t h e  exhaust w a s  col lected on t h e  g lass  p la te .  The results of these  
measurements are shown i n  Table V. 

The 

It was checked f o r  the  case of lead t h a t  about 8$ of  the mass 

A s  i s  reasonable, a strong cor re la t ion  e x i s t s  between t h e  e jec ted  

From t h i s  
mass and t h e  physical  p roper t ies  o f t h e  propellant,  spec i f ica l ly ,  t he  
energy per  gram required for vaporization from room temperature. 
cor re la t ion ,  mercury would be expectea t o  be a good emi t te r  as indeed the  
mercury expkriments showed. 

80 



1 
E 

i 

I 

t 

W 
L3 
0 t 

W m 

JJ a 
0 
0 .. 

81 
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EXPERIMENTAL RE3ULTS WITH VACUUM SPARK INJECTOR 

SECTION 6.2.3 

Average velocity 
Mass ejected computed from measured 
per discharge Momentum transferred values of ejected mass 

Cathode (g) to a pendulum and momentum 
Material C = 148 pF, U = 60av (dyne sec) (cm/sec) 

Bi 1.9 . 10-5 

F b  1.2 . 10-5 

Sb 

Cd 

1.0 ' 10-3 

7.8 * lo-6 

5 2.1 1.1 10 

17.0 

6.0 

6.4 

6 1.4 10 

6.0 io' 

4 8.2 io 

Sn 6.1 2.5 4.1 105 

Zn 5.4 

In 4.4 lo-6 

Ag  2.8 lo-6 

A1 3.6 

Fe 1.8 - 
Cr 

Ti 

M g  

cu 

-6 1.4 10 

1.3 

1.0 lo-6 

9.0 - 10-7 

5 -3  

4.8 

3 -6 

4.8 

3 *7 

5 -3 

3.3 

3.3 

4.8 

9.8 lo5 
6 1.1 10 

6 1.0 10 

6 1.7 10 
6 

5 

6 

6 

2.1 10 

3.8 10 

2.5 i o  

3.3 10 
6 5.3 10 
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t Summary and Conclusions 

A variety of metals are  desirable as propellants fo r  the pulsed 
plasma gun. 
the gun as a vapor p r io r  t o  the main cu r ren t  flow. Various schemes are 
discussed. It seems most a t t r ac t ive  to  generate small metal plasma burs t s  
by a small secondary discharge. An experimental program w a s  s ta r ted  t o  
invest igate  these so-called vacuum sparks. It w a s  found that the magni- 
tude of propellant ejected per burs t  could be of sui table  magnitude f o r  
use i n  the pulsed 

fo r  metal propellants i n  a sui table  discharge geometry. The propellant 
in jec tor  can be operated simply by connecting it t o  a charged capacitor. 
This scheme uses a th in  metall ic f i l m  coated out on an insulator  by the  
preceeding discharges. 

It i s  concluded t h a t  the propellant must be introduced i n t o  

lasma gun. The ejected plasma has a directed velocity 
i n  the order of 10 % cm/sec. A simple self-tr iggered mechanism exists 

I 
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7.0 POWER - 
7.1 Introduction 

I n  the last quarter, a prelimimary study of power conditioning 
and control systems sui table  f o r  our devices was accomplished. 
e l e c t r i c a l  power sources were considered; so la r  photovoltaic, nuclear 
turboelectr ic ,  and nuclear thermionic. Source charac te r i s t ics  were ex- 
amined t o  the extent tha t they  a f fec t  the choice of par t icu lar  conversion 
schemes. Power conditioning and control systems t o  match plasma device 
Characterist ics t o  those of the sources were considered. Par t icular  de- 
ta i ls  and problems of the  power conditioning subsystems were studied. 

Three prime 

Although the poten t ia l  power capabili ty of the sources con- 
sidered i s  greater, the  power l eve l  chosen f o r  t h i s  study i s  10 W. 
more immediate prospective missions d ic ta te  t h i s  and it i s  f e l t  t h a t  higher 
power l eve l s  may be accommodated by paral le l ing proposed 10 kW systems. 
I n  v i e w  of the state-of-the-art i n  thrustors  and semi-conductor devices 
it i s  not considered possible t o  operate a single thrus tor  a t  say, 1 MM 
nor i s  it p rac t i ca l  f o r  spaceflight t o  condition and control 1 MM with 
an individual power conditioning unit. 
with multiples of thrustors  and power conditioning modules. 
s i r ab le  from a r e l i a b i l i t y  standpoint. 

The 

These power l eve l s  will be obtained 
This i s  de- 

Operation of the plasma thrustor  system at 1 kV and a frequency 
of 150 pulses per second with a 140 @ capacitor corresponds t o  a 10.5 kW 
power level .  
power conditioning a t  a nominal 1 kV t o  charge the capacitor. The remaining 
control power (- 50 W )  i s  supplied at 28 VDC. 
ence we feel tha t  reasonable weights fo r  the 10 kW thrus tor  system com- 
ponents are: 10 l b s  f o r  thrustor  electrodes, propellant in jec tor  and gun 
t r i g g e r  assembly, 30 l b s  f o r  t he  capacitor and 3 l b s  f o r  the control, 
timing and valve pulse c i rcu i t ry .  This amounts t o  a4.0 lbs/kW thrustor  speci- 
f i c  weight exclusive of cooling structure and the propellant storage system. 
Cooling penal t ies  have been estimated t o  be about 7.5 t o  11 lbs/(kW rejected) .  
Given the achievement of the performance goal of 7@ efficiency f o r  the 
thrustor ,  the thrustor  system specific weight, including cooling structure,  
would be  about 7 lbs/kW. 
later. 

The major portion of the power ( 9 9 . q )  i s  supplied by the 

From our development experi- 

18,19 

The power conditioning modules w i l l  be discussed 

A conceptual plasma thrustor  system i s  i l l u s t r a t e d  i n  Figure 44 
A pa r t i cu la r  system would involve suff ic ient  redundancy and switched in te r -  
faces  t o  provide maximum f l e x i b i l i t y  and r e l i a b i l i t y  at the expense of 
increased weight penalt ies.  
t i o n  of th rus tors  and power conditioning modules i s  desirable t o  meet 
various power levels and t o  accommodate f o r  degradation of individual uni ts .  
We are considering here a system f o r  prime propulsion. 
tu rboe lec t r ic  o r  thermionic power source the thrus t  vector would probably 

Provision f o r  the operation of any combina- 

With a nuclear 
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be f ixed  r e l a t i v e  t o  t h e  spacecraft  with a t t i t u d e  con t ro l  accomplished 
by an a u x i l i a r y  system, whereas with a s o l a r  a r r a y  the re  may be t h e  
necess i ty  r ndependent o r i e n t a t i o n  cont ro l  o f  t h e  a r r a y  and of t he  
t h r u s t o r s  . @,28 

7.2 Power Sources 

Solar  Photovoltaic 

I 

The state of the s o l a r  panel technology has  been advancing 
rapidly.  I n  use now are t h e  Mariner-type systems with spec i f i c  weights 
o f  100 lbs/kW. A system operating a t  about 50 lbs/kW i s  a p r a c t i c a l  
design cons t r a in t  today,20,21 and more advanced systems a t  37 lbs/kW are 
being studied. P a r t i c u l a r  missions may requi re  more or  less panel regula- 
t i o n  and pro tec t ion  c i r c u i t r y  and s u f f i c i e n t  provision f o r  radiation, 
micrometeorite, and t r a j e c t o r y  degradation of  panel power output. Without 
such provisions panel output c h a r a c t e r i s t i c s  w i l l  vary g r e a t l y  with t i m e .  
For a s c i e n t i f i c  payload a f a i r l y  w e l l  defined output c h a r a c t e r i s t i c  i s  
des i rab le ,  while t h e  requirements f o r  e l e c t r i c  propulsion are less s t r ingent .  
With t h i s  i n  mind one might ob ta in  mission advantages from a two sec t ion  
a r r a y  with one sec t ion  designed f o r  gross power (propulsion),  t h e  o the r  
f o r  lower power systems requi r ing  c lose r  con t ro l  of  input  power. 

Arrays m y  be designed v i t h  output voltages ranging from about 
30 t o  500 v o l t s  dc although the  high voltage output represents  a g r e a t e r  
r e l i a b i l i t y  problem. 
f i c  payload a two-level output i s  desirable.  
t o  supply conventional con t ro l  and instrumentation c i r c u i t r y  and the  o the r  
a t  100 t o  500 VDC as input  t o  power conditioning f o r  t h e  plasma device. 
100 t o  500 V output i s  within the r a t i n g  of modern semiconductors and per- 
m i t s  u t i l i z a t i o n  of t h e  higher efficiency, lower weight c h a r a c t e r i s t i c s  
o f  proposed power conditioning c i r c u i t s  operating a t  these higher voltages. 

For t h e  purpose of an e l e c t r i c a l l y  propelled s c i e n t i -  
One bus i s  a t  a nominal 28 VDC 

18 

Nuclear Thermionic 

Nuclear thermionic power sources w i l l  have spec i f i c  weights of 
The cesium diodes 

Again it i s  poss ib le  t o  design 

5-10 lbs/kW depending upon sh ie ld ing  and power level. 
produce about 100 W of power each a t  .6-.8 VDC. A t y p i c a l  diode module 
w i l l  produce 10-15 kW a t  about 100 VDC.22,23 
a two-bus system, a low voltage bus f o r  con t ro l  and instrumentation and 
a h igh  vol tage  bus (100-500 V) f o r  prime propulsion. 

I 

Nuclear Turboelectric 

The reactor-powered turbo-a l te rna tor  concept, SNAP 50/SPUR, 22, 23 
i s  t o  produce .3 - 1 MWe of 3 phase, 120/208 VAC power a t  2.4 kHz t o  3.2 
lcHz w i t h  a s p e c i f i c  weight of  10-20 lbs/kW depending upon shielding re- 
quirements. 
i s  1,500/2,600 VAC. 24 

An a l t e r n a t i v e  output voltage l e v e l  considered poss ib le  
It i s  a l s o  f eas ib l e  t h a t  a multi-stage generator 
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could provide a number of specif ic  d i rec t ly  usable power levels,  a C  
as w e l l  as dc. 

7.3 Power Conditioning 

Power conditioning fo r  a pulsed plasma thrus tor  involves problems 
d i s t inc t ly  different  from other systems. 
efficiency power supplies f o r  ion engines using the conventional Jensen and 
Royer converters, or voltage o r  current fed SCR inverters.  
arises i n  t rying t o  use these power supplies t o  charge the capacitor of a 
plasma thrustor  d i r ec t ly  because they cannot be more than 5 6  e f f i c i e n t  i n  
such an application. Therefore, a f'undamentally d i f fe ren t  c i r c u i t  concept 
i s  needed. Two concepts a re  discussed i n  t h i s  section. 

Much work has been done on high 

A d i f f i cu l ty  

It i s  w e l l  known t h a t  a RLC se r i e s  resonant c i r cu i t  can provide 
an e f f i c i e n t  ( 7 )  > 9%) means fo r  capacitor charging. 
the  final charge voltage on the capacitor i s  twice the source voltage, i f  
charging i s  terminated after the f irst  half  cycle of current. 
t he  source must be "stiff", i.e., of low impedance and adequate surge 
capabi l i ty  . 

With t h i s  scheme, 

I n  that case, 

To use a resonant charging scheme with a solar  array having an 

la rge  f i l t e r  capacitor bank i s  necessary t o  buffer the array against  the 
thrus tor  capacitor charging current surge. A typ ica l  system i s  shown i n  
Figure 45(a). 
appreciable amount, thereby achieving an e f f i c i en t  resonant charge and re- 
ducing the ineff ic iencies  associated with charging the buffer  bank i tself  
which are proportional t o  the incremental charge i n  buffer  bank voltage. 
The buffer  bank capacitance must be approximately ten  times the  thrus tor  
capacitance o r  about 1 t o  2 millifarads. 
be used because of t h e i r  high specific capacity. 
that they be enclosed i n  a hermetic container at  atmospheric pressure i f  
used i n  a space environment. Sil icon controlled r e c t i f i e r s  are suited f o r  
use as a combination switching and commutating element and are available 
with the necessary voltage and current ratings.  The inductor i s  chosen so 
t h a t  the  charge period i s  l e s s  than the  minimum thrustor  repe t i t ion  period, 
and need only be large enough t o  l i m i t  peak charging currents t o  acceptable 
levels. 
are tabulated below. 

. output of 500 volts,  thus giving a 1 kV capacitor charge voltage, a 

This prevents the  source voltage from decreasing by an 

For t h i s  e lec t ro ly t ics  a re  t o  
Their construction requires 

Estimated weights for  the basic system components shown i n  Figure 45(a) 

Component Weight ( l b )  

5 400 p.3' - 550 V e l ec t ro ly t i c  capacitors 4.5 
hermetic case 3 e o  

charging inductor 7.5 
1.0 2 s i l i c o n  controlled r e c t i f i e r s  - 

16.0 l b s  
1.6 lbs/kW 
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The most common fa i lu re  mode of the e l ec t ro ly t i c  capacitors 2s 
by a short-circuit  d i e l ec t r i c  breakdown. 
capacitor bank may be obtained by redundancy and by connecting the capa- 
c i t o r s  with f’usible links so tha t  failure of one capacitor w i l l  result 
i n  clearing it from the c i r c u i t  by the act ion of a l l  others  which dis- 
charge in to  it. 
of i t s  blocking character is t ic ,  i.e., anode t o  cathode short. TO in-  
crease r e l i a b i l i t y  i n  the  switching c i rcu i t  one may place two or more 
SCRs i n  ser ies ,  each rated for  t h e  maximum voltage and current. 
i f  one were t o  run the thrustor  i n  a self-resonant mode,” the need for  
a switching element i s  eliminated. 

Rel iab i l i ty  i n  the  f i l t e r  

The most common fa i lure  mode of an SCR is  by breakdown 

Obviously 

The low impedance, high current charac te r i s t ics  of a nuclear 
thermionic source permit the poss ib i l i ty  of resonant charging with re- 
duced requirements f o r  the buffer bank. The constraints are, first, 
the peak surge current l imitat ions i n  the thermionic diodes, and secondly, 
the  standby loading requirements of the diodes between the periods of 
capacitor charging. 

Resonant charging may a l s o  be used with a nuclear turbo- 
e l e c t r i c  source. 
a l t e rna to r  output character is t ics .  
transform and then r ec t i fy  t o  charge a buffer bank o r  i f  dc power i s  avail- 
able, charge the buffer  bank directly.  
reactance of the a l te rna tor  and resonant charge d i rec t ly  o r  through a 
transformer at  a submultiple of t he  a l te rna tor  frequency. 

A number of variations a re  possible depending upon the 
For a low voltage ac output one may 

One might a l so  u t i l i z e  the output 

Another e f f i c i e n t  means of charging a capacitor i s  the method 
i l l u s t r a t e d  schematically i n  Figure 45 (b) . 
element, Q1, a current begins t o  f low,  storing energy i n  the inductor L. 
For times l e s s  than the  L/R time constant of the c i r cu i t  a favorable 
energy balance exists between energy stored i n  L and dissipated i n  R. 
If Q1 i s  opened rapidly, the  diode D 1  becomes forward-biased and C i s  charged 
e f f i c i en t ly .  The f i n a l  charge voltage being determined by the Q 
time. 

I f  w e  close the switching 

turn-off 1 

Conversion modules which produce 10 kW of power a t  1 kV using 
t h i s  concept have been designed by ITT Space Power Components Division. 
By using SCR’s as switching elements an efficiency of 8Ho with a specif ic  
weight of 13.5 lbs/kW has been obtained. 
8vo e f f i c i e n t  @ 11.5 lbs/kW. 
t i o n  losses .  These units may be used as 10 kW building blocks t o  condition 
a plasma thrustor  t o  any of the previously mentioned sources. 
input voltages, f i l t e r ing ,  and by using modern semiconduotors, e f f ic ienc ies  
of  g@ appear t o  be possible. 
power leve ls  because of decreased commutation losses. Both c i r cu i t s  could 
be  used i n  a highly redundant and rel iable  matrix type of power conditioning, 
i f  load sharing problems can be solved. 

A t ransis tor ized c i r c u i t  i s  
The SCR uni t  i s  less e f f i c i en t  due t o  commuta- 

By optimizing 

The SCR uni t  i s  more e f f i c i en t  a t  lower 



8.0 DIAGNOSTICS 

8.1 Thrust Stand 

8.1-1 Description 

A schematic of  t h e  t h r u s t  stand system i s  shown i n  Figure 46- 
The t h r u s t  stand cons i s t s  of  a closed-loop servo-controlled system. 
The stand proper, upon which t h e  plasma t h r u s t o r  i s  mounted, i s  supported 
as an  i n e r t i a l  platform above a reference platform by four  f lexures ,  The 
f lexures  are c r i t i c a l l y  loaded t o  remove mechanical r e s to r ing  forces.  

The advantages o f  iising a four-flexure support r a t h e r  than load 
c e l l s  o r  o the r  devices were described i n  a previous r e p o r t 4 a n d  by Hymn 
and Conner. 25A displacement of t h e  stand r e l a t i v e  t o  t h e  reference p l a t -  
form i s  sensed by a non-mechanically coupled transducer. 
f i r e s , t h e  servo c i r c u i t r y  cancels t he  momentum given t o  t h e  stand. 
servo fo rces  are electromagnetically coupled t o  t h e  stand by t h e  servo 
c o i l  and magnet assembly. 
one f o r  p o s i t i o n  control,  t h e  x-loop, and one f o r  rate damping, t h e  x loop. 
Each servo c o i l  assembly cons is t s  of  a many t u r n  solenoid immersed i n  a 
homgeneous r a d i a l  B f i e l d  as shown below. 

When t h e  t h r u s t o r  
The 

The servo c i r c u i t r y  cons i s t s  of two close: loops, 

The magnet i s  attached t o  t h e  stand and t h e  c o i l  t o  t h e  platform. The servo 
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force  i s  propor t iona l  t o  t h e  c o i l  current and can be ca l ib ra t ed  by apply- 
i ng  known fo rces  o r  impulses t o  t h e  stand. 

The stand can be used i n  two ways: a t  high t h m s t o r  r e p e t i t i o n  
rates o r  on a s ing le  shot basis. A t  high r e p e t i t i o n  rates (i.e., pulse 
r e p e t i t i o n  period less than system response t i m e )  a ne t  balance between 
t h e  acce le ra to r  t h r u s t  and t h e  x-loop p o s i t i o n  fo rce  i s  obtained on a 
s t a t i c  basis. On a s ing le  shot basis, t h e  acce le ra to r  impulse i s  measured 
by in t eg ra t ing  t h e  servo forces  over t i m e .  It i s  required t h a t  the i n i t i a l  
and f i n a l  momentum of the  stand be the  same, i.e., t h e  sum of all impulses 
delivered t o  t h e  stand be zero. Thus, 

JF d t  = JF d t  + JF d t  a P r 

where t h e  first term i s  the impulse from t h e  acce lera tor ,  t h e  second and 
t h i r d  terms are t h e  impulses from the  p o s i t i o n  and rate servo forces,  
respectively.  It has  been assumed that  no o the r  r e s to r ing  fo rces  are 
operating. 
follows that t h e  acce le ra to r  impulse i s  measured c o r r e c t l y  even if 
e l e c t r o n i c  t r a n s i e n t s  were t o  cause a temporary malfunction i n  t h e  servo 
c i r c u i t r y .  The e l e c t r o n i c  component recovery times are orders  of magni- 
tude less than  the o v e r a l l  system response time. 

If, as above, t h e  ne t  impulse t o  t h e  stand i s  zero, it then  

A s  a spec i f i c  example of the genera l  expression above, l e t  the 
servo fo rces  be l i n e a r  i n  pos i t i on  and velocity,  Le .  

. 
F = k x  and F = k x  P P  r r 

where kp and k r  are constants. 
n u l l  pos i t ion ,  i.e. 

A l s o  le t  the stand be returned t o  i t s  

. . 
Jxdt = AX = 0 ; AX = 0 . 

Then the acce le ra to r  impulse, I, i s  given by 

The impulse i s  propor t iona l  t o  t h e  t i m e  i n t e g r a l  of the displacement. If 
the output of  the p o s i t i o n  transducer i s  propor t iona l  t o  displacement, 
t hen  the impulse i s  propor t iona l  t o  t h e  i n t e g r a l  o f  t h e  transducer output 
s igna l .  Our thrust stand system meets a l l  t h e  above requirements. 

The t h r u s t  stand can a l s o  be used as a free b a l l i s t i c  seismic 
pendulum where t h e  only r e s to r ing  forces are those  due t o  t h e  stand 
f lexures .  
disconnected. 
monitor displacement f r o m  t he  n u l l  posit ion.  
c a l i b r a t e d  by app l i ca t ion  of a known impulse. For accuracy and economy 
it is  convenient t o  have: t h e  force constant of  t h e  f l exures  be l i n e a r  

The flexures are not c r i t i c a l l y  loaded and the servo c o i l s  are 
The p o s i t i o n  transducer and rece iver  are used only t o  

The peak displacement i s  
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over the  range of motion; the  response of the tmnsducer-receiver system 
be l i n e a r  over the range of operation; and the time constant f o r  the decay 
of the osc i l la tory  motion be greater  than the osc i l l a t ion  period. These 
c r i t e r i a  have been met i n  our thrust stand. 
response over a wide range was checked and found t o  scale  l inearly.  

By using known impulses, 

The i n i t i a l  design of the thrust  stand i s  given i n  the l as t  
f inal  report.' Much of the i n i t i a l  system has been modified t o  obtain 
higher sensi t ivi ty ,  s t a b i l i t y  and signal-to-noise ra t io .  Tektronix 
operational amplifiers, type "O", are now used i n  the  servo loop. These 
un i t s  have better charac te r i s t ics  and more f l e x i b i l i t y  than the previous 
amplifiers. Booster amplifiers a re  used t o  obtain the power gain necessary 
t o  drive the  servo mechanisms directly.  
system. 
element and i s  mounted i n  such a way that the capacitance of the o s c i l l a t o r  
tank c i r c u i t  var ies  with displacement of the stand, thereby varying the 
output frequency. The osc i l l a to r  output i s  fed in to  an FM receiver and 
demodulated. 
Displacement of the stand r e su l t s  i n  a DC output from the discriminator 
a t  the rate of 24 mV/p. 
the  servo c i rcu i t .  The previous transducer system w a s  a Sanborn l i nea r  
d i f f e r e n t i a l  transformer and bridge c i rcu i t .  I t s  drawbacks were: an 
incomplete demodulation of the 2.4 kEz car r ie r ,  the  necessity of extract-  
i n g  the s ignal  from a 350v offset, and an inherent phase s h i f t  i n  the 
overa l l  system. 

The new transducer is  a s i q l e  FM 
A modified Colpi t ts  osc i l la tor  i s  the basic  frequency determining 

System nu l l  frequency i s  31.5 MHz and bandwidth i s  600 kRz. 

The discriminator output i s  the signal fed t o  

8.1.2 Typical Operation 

I n  the thrustor  pe r fomnce  measurements of Section 4, the 
thrust balance was operated as a free b a l l i s t i c  seismic pendulum with the 
stand flexures providing the only restoring force. The displacement from 
the n u l l  posi t ion w a s  monitored d i rec t ly  from the output of the transducer 
receiver  . 

It was established that no e l e c t r i c a l  t rans ien ts  o r  nonlinear 

The gun was f i r ed  in to  an insu la ted  bucket which was fastened t o  
elements i n  the  mec'mnics of t h e  tliixst stand produced erroneous measure- 
ments. 
the  gun, i n  order t o  cancel net momentum transfer ,  and it was observed 
that the  th rus t  stand reading dropped t o  less than 6qd of the reading 
corresponding t o  the thrust measurement. The current t o  the tank w a l l s  
w a s  measured with d i f fe ren t  Rogowski c o i l s  and found t o  be less than 54'0 
of  the  t o t a l  gun current. No corona was v i s ib l e  around the t o t a l  system. 

The th rus t  balance was calibrated by t ransferr ing a known 
impulse t o  the stand through a n  ine las t ic  co l l i s ion  of the bob of an 
adjustable  simple pendulum. Since the cal ibrat ion impulse b i t  was t rans-  
ferred t o  the thrust stand a t  a different  place than the  gun impulse, 
there existed a poss ib i l i t y  of a different  response of the thrus t  stand 
i f  t h e  flexures are not perfect.  
following experiment. 

We examined t h i s  po ten t ia l  e r ror  by the 

93 



I n  addition t o  the calibration pendulum (1) amthar pendulum ( 2 )  was 
ins t a l l ed  which transferred i t s  momentum t o  the cathode of the gun. 
the  bobs have the same tank mount, and i f  they f a l l  through the same angle, 
then the thrust stand readings T are related as follows: 

If 

I I 

where m and A are the mass and the length of the pendulums. 
of the  measurements was within 3%. 

The agreement 

A typ ica l  cal ibrat ion run i s  shown i n  Figure 47: it shows the 
l i n e a r i t y  of  the response of the stand. 
i n  Figure 48. 
f i r i n g  the gun, no stand response i s  observed. 

A typ ica l  th rus tor  run is  shown 
When the propellant injector  alone i s  operated, without 

8.2 Mass Flow Apparatus 

The measurement of the mass flow per  shot i s  made with the 
apparatus drawn schematically below. It i s  similar t o  a displacement 

RESERVOIR THRUSTOR I 1 
VALVE I VA LV 

I 1  
Ixn 

I f  
m - 2 3  f 

I 

-LIQUID 
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type manometer. 
thrustor  i s  f i red.  
columns. 
the flexible hose. 
pressure effects.  
noted, and the reservoir pressure i s  measured. With these measurements, 
the mass flow per shot may be calculated from the equation of state for  
the  gaseous propellant. 

To make the measurement, valve 1 i s  closed and the 
The mass flow displaces the leve ls  of the  l iqu id  

The releveling of the columns eliminates d i f f e r e n t i a l  
The columns are brought t o  the same l e v e l  again by adjusting 

The change i n  gas volume t o  the r i g h t  of valve 1 i s  

For good sens i t i v i ty  of the device, the measured gas volume 
has t o  be comparable with the  tube volume exis t ing between the two valves 
and the l iqu id  surface. 
small compared t o  the  gas pressure. 

Also, the vapor pressure of the  l iqu id  must be 

8.3 A Fast -Ac t iug Calorimeter 

A new calorimeter has been developed t o  measure the exhaust 
It has a fast t i m e  energy from a single shot of the  plasma thrustor.  

response and only one measurement i s  required t o  determine the t o t a l  
energy incident on the calorimeter. 
d i r ec t  and radiat ion losses  can be determined easily.  
consis ts  of a long narrow ribbon of metal f o i l  wound continuously around 
a g lass  frame t o  form a re-entrant cavity. 
below. 

The cal ibrat ion i s  simple and 
The calorimeter 

It i s  i l l u s t r a t e d  schematically 

FRAME 

STRIP 

U 

The plasma heats the ribbon and changes i t s  resistance. It w i l l  
be shown that the t o t a l  resistance change depends only on the t o t a l  energy 
deposited i n  the ribbon and i s  independent of the l o c a l  energy density. 
Consequently, the t o t a l  resistance change can be used t o  monitor the t o t a l  
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energy input t o  the calorimeter. 
if loca l  energy density measurements are required. 
typicaLly of t he  order of lo’* ohms per joule, i s  measured with a Wheatstone 
bridge c i rcu i t .  
mined primarily by the thickness of the ribbon, and i s  of the order of tens  
of microseconds. Consequently, the measurement can be made before s ign i f i -  
cant radiat ion losses  can occur. 

The calorimeter can be made i n  sections 
The resis tance change, 

The time resolution of t h i s  type of calorimeter i s  deter-  

The resistance change can be calculated as follows. L e t  an 
element of ribbon length, A i ,  undergo a resis tance change, A r ,  due t o  
a change i n  temperature, AT. Then 

CY OR AT 
C7A A r  = 

where cy i s  the temperature coefficient of resistance, Q i s  the conductivity, 
and A i s  the area of the ribbon cross section. 
which causes the temperature change i s  

The energy deposited, Ac, 

where @ i s  the specif ic  heat and p i s  the mass density. 
product AA AT and summing over the ribbon elements we get  f o r  the t o t a l  
res is tance change 

E l i m i n a t i n g  the 

AE. Q AR= 
O B  P A 2  

The t o t a l  res is tance change depends on the t o t a l  energy deposited and not 
on the  l o c a l  energy density. 

The calorimeter is  calibrated by feeding e l e c t r i c a l  power in to  
the ribbon and observing the temperature rise after a known time. 
cedure i s  illustrated i n  the oscillogram shown i n  Figure 49( a ) .  
of t he  t r ace  shows the f i rs t  resistance reading R1; the  Calorimeter i s  
heating up during the measurement because of the power input from the 
masur i rg  c i rcu i t .  The meamrirg; c i r cu i t  i s  then disconnected, and simrc2- 
taneously, a known power i s  fed in to  the ribbon. 
and a second resis tance measurement i s  made. 
illustrates the resis tance change due t o  the known power input. d e  t h i r d  
reading R No 
e l e c t r i c a  1 p o w e r  i s  fed i n t o  the  ribbon between the second and th i rd  readings. 

The pro- 
The beginning 

The power i s  shut of f  
The second reading R 

taken a f e w  seconds la ter  establ ishes  the radiat ion losses. 

Figure 49b) shows a measurement taken with a pulsed a rc  plasma 
thrustor .  The procedure i s  the same except that the  thrustor  i s  f i r e d  at  
the  end of t he  f i r s t  resistance reading R1. 

8.4 Velocity Probe 

The e s sen t i a l  features of the  velocity probe, and i t s  usage, have 
been described i n  Section 5.2. 
l i n k  the probe s ignals  t o  the velocity d is t r ibu t ion  and the temperature of 
t h e  ions. 

I n  t h i s  section formulas are given which 
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Consider that the probe i s  in te rcept ing  a steady-state plasma 
flow. 
i s  opened instantaneously. 
The ion  cur ren t  w i l l  increase  t o  its steady-state value as t h e  slower 
ions  a r r ive .  
i o n  cur ren t  i s  r e l a t e d  t o  t h e  ve loc i ty  d i s t r i b u t i o n  function of t h e  p a r t i c l e s  
i n  f r o n t  of t h e  probe by means of  Equation (1) . 

Let the plasma s h u t t e r  be nominally shut. Assume t h a t  t h e  s h u t t e r  
The fast ions arrive f i r s t  a t  the  co l lec tor .  

I f  the time i s  measured from t h e  opening of  t h e  shut te r ,  t h e  

W 

I(t) = c J f ( v )  v dv 
V 

0 

where 

c = a constant describing the  degree of  i on iza t ion  and t h e  
area of t h e  eiitrance hole, 

f ( v )  = t h e  number d i s t r i b u t i o n  of ions with t h e  a x i a l  ve loc i ty  
component v, 

t = t he  time after s h u t t e r  opening, 

d = t h e  d is tance  between the  s h u t t e r  and co l lec tor ,  

v = d/t. 
0 

Taking t h e  der iva t ion  of Equation 1 with respec t  t o  v g ives  

d I ( t )  - d I ( t )  d t  - 
d t  avo - c f (vo )  vo = 

dvO 

from which results an expression f o r  f ( v  ) 
0 

L e t  us next consider t h e  case i n  which t h e  ions i n  t h e  plasma 
are charac te r ized  by a Maxwellian ve loc i ty  d i s t r i b u t i o n  superimposed on 
a n  average p l a s m  velocity,  U. 
d i s t r i b u t i o n  i s  given by Equation (4) .  
t o  be i n  the x-direction. 

Observed i n  t h e  labora tory  frame the 
The motion of t h e  plasma i s  assumed 

dn x e dvx dv dv 
Y Z  

n = number dens i ty  of  ions w i t h  ve loc i ty  v 

m = p a r t i c l e  mass 

v x' y' vz 

(4) 

k = Boltzmann constant 
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Equation 4 represents  a l l  the ions of t h e  plasma i n  f r o n t  of 
t h e  probe. 
of the  probe geometry. 
ve loc i ty  vector be contained i n  the  opening angle cy of t h e  
probe (Equation 5 ) .  

Only p a r t  of them, however, can reach the  c o l l e c t o r  because 
The necessary condition f o r  co l l ec t ion  i s  t h a t  t h e  

I 

The number of p a r t i c l e s  n with the  a x i a l  ve loc i ty  component v 

observing the in t eg ra t ion  l i m i t s  given i n  
which w i l l  reach the  co l l ec to r ,  i s  h t a i n e d  by in t eg ra t ing  Equation (4)  
w i t h  respec t  t o  v 
Equation ( 5 )  

and v 
Z' Thh i n t eg ra t ion  then gives: 

o r  

dnx M (e  

m 2  - -  m 
r, 2kT - -(v - u)2 2kT x 

with ro = 0 

cy r1 = vx t g  2 

I 

J' e r 
0 

r d r )  dvx 

dnx M e - e  dv 
X 

This expression contains the ve loc i ty  d i s t r i b u t i o n  function f( v) 
for t he  axial ve loc i ty  component v as it w i l l  be observed by the probe. 
The temperature and t h e  plasma ve loc i ty  a re  independent constants. 

2 m 2 2 2 a  
C ( V  - u) + v t g  51 - -  m 

2kT 2kT - -(v - u) 

Equation (3) and (8) are t h e  r e l a t ions  which have been used i n  Section 5.2. 
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9.0 APPENDIX 
I 

OPEMTING PRINCIPLES OF THE FERROMAGNETIC CORE VALVE 

Consider the following geometry: 

The moving armature a t  the r igh t  i s  designed to open the valve; we 
assume t h a t  it contains the majority of the moving mass. 

The inductance of t h i s  c i r cu i t  as seen at  the  c o i l  terminals 
i s  

2 awn 

- + 2x 
w 

Po 
L =  R I 

where p is  the incremental permeability a t  rhatever flux ex i s t s  i n  the 
c i r cu i t .  
t he  inequality 

For high-w core aaterials, even a very small gap x w i l l  e s tab l i sh  

we w i l l  assume t h i s  t o  hold, and so, 

The gap alone then sets the inductance, and furthermore, nearly the e n t i r e  
magnetic energy i n  the  system ex i s t s  i n  the gap. 
i f  one r e c a l l s  (1) t h a t  the energy density i s  

This i s  eas i ly  ver i f ied 

B2 wm = - 
2lJJ ’ 

and (2) t h a t  B i s  continuous from the core in to  the gap. 
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The force which ac t s  t o  close the  gap is, for a given 
current I 

neglecting the  sign. 

(For bes t  economy of design i n  terms of core weight and ac- 
celeration, w e  assume t h a t  both the armature and the rest of the core 
are run near saturation; they w i l l  both be given the same cross-section 
area aw.) 

The mass of the armature i s  

m = p aw(2a+b) , p = mass density 

and so i t s  acceleration i s  

But now, 

R + H  2x 
nI = Hcore gap 

- --G R + 2 x  1 . 
PO 

R 
c1 

Since we assume t h a t  x >>- , t h i s  becomes 

and so, 

This says t h a t  as long as the c o i l  current i s  large enough t o  
keep t h e  core saturated, the acceleration i s  determined only by the saturated 
B, and by the length and mass density of the  armature. 
mind, however, that three assumptions are involved here. They are: 
t h a t  x >> A/p, (2)  t h a t  the cross sections of the  armature and core are 
i d e n t i c a l  and (3) that the  armature i s  s ignif icant ly  heavier than anything 
which may be attached t o  it. 

It must be kept i n  
(1) 

Let  us subst i tute  some typical  numbers in to  the  expression for E. 



L e t  

B = 1.7 Tesla 

= 8 x 10 3 k g / m  3 

-2 2aSb = 1.5 x 10 m . 
Then, 

4 2 0 .  

x =log  x 10 m/sec 

A displacement of 1 mm w i l l  then occur i n  a t i m e  

t = = 300 i s e c  , 

and a 1/4 mm opening, which i s  suf f ic ien t  i n  some instances, occurs i n  
150 psec. 

The magnetic f i e l d  energy which must be establ ished i n  the gaps 
i s  dependent on w while the acceleration i s  not; if we set w = a and take 
a = 5 am as typica l ,  then for ,  say x = 0.5 mm, 

0 

B2 2 

2p0 
Fie ld  Energy = - 2a x 

0 

= 2.9 x 10 -2 joules  . 
I n  contrast ,  many joules  are needed t o  run any eddy-current 

valve . 
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